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I Abstract

I This is the final report for the research project entitled OPUS: Optimal

Projection for Uncertain Systems-- OUS is a unified approach to control-system5 design and analysis for high-performance, multivariable applications such as

large flexible space structures. In particular, OPUS yields low-order, robust

I controllers which meet both time- and frequency-domain objectives. The present

report is divided into three main research areas:

1 1) Fixed-Structure Design

3 2) Robust Analysis and Design

3) Further Extensions

Major accomplishments of the research program include:

I 1) A unified approach to reduced-order, robust modeling, estimation, and
control including singular problems and decentralized architectures

2) A computationally tractable approach to designing low-order, finite-

dimensional controllers for distributed parameter systems

3) A thorough development of quadratic Lyapunov bounds for robust
stability and performance analysis .: -

4) Complete unification of L2 (time-domain) and H,6 (frequency-domain)
design criteria for full- and reduced-order modeling, estimation, andcontrol. !
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i I1. 0 INTRODUCTON

3 1.1 Overview

5 Over the past 10-15 years controls researchers have come to the

realization that classical controls analysis and designi techniques are

inadequate in the face of modern large scale, high-performance applications.

In particular, the principal motivation for OiUS is the problem of vibration

suppression in large lightweight flexible space structures characterized byI high-dimensional, highly uncertain models. In addition, stringent performance

specifications in the face of high disturbance levels place severe demands on

existing control-design techniques. Specifically, performance tradeoffs

involving sensors, processors, actuators, and identification accuracy must be

cut as tightly as possible to minimize hardware and testing costs. For

feasibility and cost effectiveness, system design must also be performed3 efficiently with respect to human and coaputer resources.

The goal of this project has been to develop a mathematically rigorousn
control-design methodology which directly addresses these technology issues.

In particular, optimal projection theory addresses the need for low-order,I high-performance controllers which can be implemented on-board for real-time

operation. Low-order controllers are necessitated by cost, weight, and

I reliability constraints associated with space-qualified processors.

Furthermore, OPUS incorporates a fundamental theory of robust controller

synthesis to account for unavoidable modeling uncertainties arising for reasons

such as material and manufacturing variations, thermal and aging effects, as

well as limits to identification accuracy. The principal contribution of OPUS

is thus a unified theory which simultaneously accounts for both real-time

processor constraints and modeling uncertainty. A high level overview of OPUS

is given in [88] (Appendix A).

3 During the course of this project OPUS has, in addition, been extended to

a large class of problems in systems and control theory. The current scope of

i the theory includes (see Figure 1-1):

1 1-1
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I 1. A unified treatment of reduced-order modeling, estimation, and
control (Appendix B);

£ 2. Robust estimation and control via quadratic Lyapunov functions
including robust performance (Appendices G,H,I);

3 3. A unified approach to 2 and H. control including parametric
robustness (Appendix J);

4. Decentralized, nonstrictly proper, and sampled-data control
(Appendices D,E,L).

Of particular interest is the recent extension to H, control. As shown in

(117] (Appendix J), we have developed a method for directly imbedding H, design

constraints within OPUS theory and thus, in particular, within LQG. These

results are given by a system of modified Riccati equations which directly

generalize IQG theory and which have the potential for significant

i computational savings compared to existing H synthesis methods.

3 The underlying philosophy of OPJS is to capture as many design

constraints as possible within a single system of design equations. This is

I demonstrated in (117] by the unification of time- and frequency-domain

criteria addressed by the L2/1-6 design equations. An additional example isI provided by the results obtained in (119,94] (Appendices H and I) for robust

stability and performance via fixed-order compensation in the presence of real-

valued structured parameter uncertainty. In these algebraic design equations

I the projection matrix automatically enforces a constraint on controller order,

while additional terms guarantee both robust stability and performance. Note

I that for full-order controllers in the absence of uncertainty, these four

coupled equations reduce to the standard pair of separated Riccati equations of

i LQG theory. Versions of these equations have been developed for each of the

problems shown in Figure 1-1. These results are discussed in more technical

detail in the following sections.

The justification for this line of research is based upon several

i considerations. First, and most obvious, is the fact that our results show

that numerous design constraints can be captured simultaneously within a

constructive theory which directly generalizes LQG theory. Such an approach

provides the capability for simultaneously performing multiple design tradeoffs

* 1-3
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for multivariable systems with respect to competing constraints such as sensor

noise, control authority, controller order, robustness, disturbance

attenuation, mean-square error, sample rate, degree of decentralization, etc.

Next we stress that rathe- than being ad hoc constructions, these design

equations follow directly from the optimality of well-defined performance I
objectives. Thus, these results are useful in assessing the suboptimality of

alternative methods. For example, as shown in [20] several suboptimal 3
approaches to reduced-order control design can be viewed as approximations to

the optimal projection equations. 3
1.2 Status of Computational Results

Overall, OPUS can be viewed as a theory for characterizing solutions to

constrained control-design problems. Transforming OPUS into a practical design 3
methodology requires the development of effective computational algorithms.

Such development has been carried out in related work by S. Richter at Harris

Corporation. Using homotopic continuation methods, Richter has developed

efficient algorithms which fully account for the structure of these modified

Riccati equations and their coupling terms. Homotopy algorithms, as reviewed

inI

S. Richter and R. DeCarlo, "Continuation Methods: Theory and
Applications," IEEE Trans. Autom. Contr., Vol. 28, pp. 660-665,
1983.

offer several advantages over both gradient-based and Newton-type methods. U
For example, homotopy methods have a strong theoretical foundation based upon

differential topology, in particular, topological degree theory, while in

practice these methods effectively address the key issues of startup,

convergence, and global optimality. Homotopy algorithms have also reached a 3
high degree of maturity and availability with the advent of HOMPACK described

in,

1-4 1
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i L. T. Watson, S. C. Billups, and A. P. Morgan, "A Suite of Codes
for Glcally Convergent Hcmotopy Algorithms," AC4 Trans. Math.3 Software, Vol. 13, pp. 281-310, 1987.

The continuation algorithm developed for the optimal projection equations

essentially follows a smooth path connecting an easily solvable version of the
equations with the final, desired form. The algorithm utilizes the tensor3 derivatives of the terms in the optimal projection equations to integrate along

the solution paths. To demonstrate the algorithm, an 8th-order, nonminimum

i phase example originally due to

R. H. Cannon, Jr., and D. E. Rosenthal, "Experiments in Control
of Flexible Structures with Noncolocated Sensors and Actuators,"
AIAA J. Guid. Contr. Dyn., Vol. 7, pp. 546-553, 1984.

I was considered. This problem was used in

I iY. Liu and B. D. 0. Anderson, "Controller Reduction Via Stable
Factorization and Balancing," Int. J. Contr., Vol. 44, pp. 507-£ 531, 1986.

to compare several reduced-order control-design methods. The comparisons

performed by Liu and Anderson highlight the suboptimal nature of these

methods. Specifically, several methods failed to yield stabilizing3 controllers for 10% of the cases while others failed for as many as 60%. In

contrast, as reported in (68,102], the optimal projection approach yielded

i stabilizing controllers for all cases considered. While the methods compared

by Liu and Anderson were most prone to failure at high authority levels, the

optimal projection results were within 20% of the LQG performance at 102-103

higher authority levels. In addition, using topological degree theory, an
upper bound has been obtained on the number of solutions of the design

equations. Letting n = plant dimension, nu = dimension of the unstable plant

subspace, nc = compensator order, .9 = number of measurements, and m = number of

I controls, the number of solutions for the case n>. nu is not greater than

* 1-5



I

,n c :s min (n, m,.z),

1 , otherwise. n

Hence, for the case in which the controller order is greater than the number of

inputs or outputs (so that the controller is not ill-conditioned), the 3
equations possess at most one solution corresponding to the global minimum.

Furthermore, since in many practical cases of interest this bound is small, it 3
suffices to compute each such solution to determine the global optimum. These

results along with suitable extensions to related problems have been used 3
widely throughout this project. For example, recent results on fixed-order

control of distributed parameter systems described in Section 2.3 were obtained

using the homotopy algorithm.

1.3 LonQ-RanQe Goals of the Project 3
The long-range (5-10 year) goal of this project is the development of a 3

truly effective computer-aided design methodology for multivariable control

design. Numerical solution of the design equations would form the basis for 5
such a design tool. This methodology would be appropriate in an engineering

environment since the user need not be familiar with the mathematics of the

design equations being solved. We envision a methodology similar to finite I
element modeling used routinely by structural analysts. An OPUS design package

would go far beyond currently available packages whose multivariable design 3
capabilities are based largely upon LQG theory.

1.4 Plan of This Report n

Since this is the final report for this project our goal is to accomplish I
the following objectives:

1) Review the evolution and maturation of the research plan throughout
the project; 3

2) Highlight the principal research accomplishments; and

1-6 1
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I

3) Sumiarize open problems and point out future research directions.

Detailed technical discussion of results obtained will not appear in the main

I body of the report. Rather, the appendices contain a fairly complete (and

lengthy) collection of the principal research results. We note that therordering of the appendices is not chronological but instead reflects the most

logical order according to subject matter.
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I

2.0 FIXED-STRUCIURE DESIGN

1 2.1 Motivation

3 While achieving the system design specifications (stability, performance,

etc.) the control-design process must not lose sight of restrictions which

m arise in controller implementation. Indeed, control-design methods which

focus primarily on performance specifications often pay a serious price byI producing controllers which are difficult, if not impossible, to implement in

practice. Hence our approach rests upon the notion of fixed-structure design.i That is, we seek to meet design specifications within a framework which

constrains the class of implementable designs. In this way the burden of

hardware implementation (sensors, processors, and actuators) can be minimizedI to the greatest possible extent.

3 2.2 The Three Basic Problems

The most fundamental restriction arising in fixed-structure design is

that of the order, or dimension, of the controller. In addressing this

problem we have developed a unified treatment of three basic problems in

reduced-ordersign, namely, modeling, estimation, and control. These three

problems form a fundamental hierarchy of design problems in system theory,U namely, to determine a system of fixed degree which, for a given system,

approximates, estimates, or controls selected plant states. The solutions toI these problems, given in (32,29,24] (Appendix B), reveal a surprising degree of

common structure. Specifically, the solutions involve systems of 2, 3, and 4I modified algebraic Riccati and Lyapunov equations coupled by a projection

matrix (the "optimal projection"). In addition, the estimation and control

results provide transparent generalizations of steady-state Kalman filter andI tQ theory.

I Although the structure of these equations is aesthetically appealing by

itself, the principal benefit for practical purposes is computational. ThatI is, by exploiting the structure of these equations it is possible to

significantly reduce the computational burden inherent in commonly used

I 2-1
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I

gradient search techniques. This point has been amply demonstra-CA in (63,68] l

as discussed in Section 1.

2.3 Finite-Dimensional Control of Distributed Parameter Svstems

The problem of controller order becomes exacerbated when the plant is
infinite dimensional since infinite-dimensional controllers cannot be
implemented precisely, while finite-dimensional plant approximations may be of
arbitrarily high order. To address this problem the fixed-structure control- 3
design results of [24] were generalized in [37] (Appendix C) to the case in
which the plant is infinite dimensional. The resulting design equations now

comprise a system of four operator equations coupled by a finite-rank
nonselfadjoint projection operator. In spite of the infinite dimensionality of
the plant, the design equations directly characterize fixed-order, finite- 3
dimensional dynamic compensator gains (Figure 2-1). Corresponding results for
fixed-order finite-dimensional modeling and fixed-order finite-dimensional 1
state estimation can also be obtained in an analogous manner.

Application of the operator-theoretic results of [37], however, requires
finite-dimensional approximation of the design equations. In practice one

could solve the design equations for a sequence of plant approximations of I
increasingly high order while keeping the controller order fixed. The limiting
controller would then serve as a nearly optimal fixed-order finite-dimensional 3
controller for the original distributed parameter system (Figure 2-2). This
was investigated numerically in [122] in a collaborative project with Professor 3
I. G. Rosen. In [122] two alternative approaches were considered for obtaining
finite-dimensional controllers for infinite-dimensional systems. The first
approach, which has been widely studied, involves computing a sequence of full-
order iQG controllers for a sequence of high-order plant approximations, while

the second approach assumes a fixed order for the dynamic controller. To I
demonstrate these methods, two examples were considered, namely, a one-
dimensional parabolic (heat/diffusion) system and a hereditary (delay) system.
For each example a sequence of spline-based, Ritz-Galerkin finite element
approximations was derived for use in the control-design procedure. LG theory

and the optimal projection approach were then used to obtain full- and first-

2-2 1
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Figure 2-1. The Optimnal Projection Equations For Finite-Dimensional
l Fixed-Order Dynamic Compensation of Infinite-Dimensional Systems

Provide a Direct Path to Optimal Physically Realizable Controllers for
Distributed Parameter Systm
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CONVERGENCE OF SUBOPTIMAL REDUCED-ORDER COMPENSATORS

IDEA: DESIGN A SEQUENCE OF REDUCED-ORDER COMPENSATORS I
WHILE INCREASING THE ORDER OF THE APPROXIMATE MODEL
AND KEEPING THE ORDER OF THE COMPENSATOR FIXED

n"' ORDER DISTRIBUTED
APPROXIMATE MODEL PARAMETER SYSTEM
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Figure 2-2. Numerical Solution of the Optimal Projection Equations for

Fixed-order Dynamic Copestion Provides a Path to the

Optimal Fixed-Order Controller for an Infinite-Dimensional system
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I order controllers for each example with plant approximations up to 32nd order.

i For the parabolic system the performance degradation of the first-order

controllers was only 2% compared to the full-order controllers (Figure 2-3),

while for the hereditary system the degradation was less than 10%. The

difference in implementation requirements for a first-order versus a 32nd-order

controller is, of course, considerable.

2.4 Decentralized Control

I In addition to incorporating constraints on the order of the feedback

compensator, the fixed-structure approach allows additional constraints on the

conplexity of the feedback law. In particular, the results of [24] assumed a

centralized structure for the dynamic compensator. In many applications,

however, a decentralized controller architecture permits a simplified feedback

communication structure and allows increased parallelism in the control law

S execution.

The fixed-structure approach is ideally suited to the decentralized
design problem. For each fixed decentralized architecture, the design

I procedure can be performed to assess the ability to meet specifications for the

given configuration. If specifications cannot be met, then the feedback

architecture can be modified to improve performance, robustness, etc.Ii
For the case of dynamic compensation, it was shown in [76] that the

I optimal projection technique provides a direct means for characterizing

decentralized controllers. The key step is the realization that each

I subcontroller in the decentralized configuration must be an optimal

centralized controller when viewed as a controller for the plant and remaining
subcontrollers. This observation imediately suggests a sequential design

algorithm in which individual subcontrollers are alternately refined until

convergence is achieved. Because the method is based upon optimization

I principles, performance improvement is guaranteed at each step. This technique

was demonstrated numerically in [76] (Appendix D) where a two-channel

I decentralized controller, fourth-order in each channel, was designed for a pair

of interconnected simply supported beans. The algorithm demonstrated

I 2-5

I



Exect Cpen Leon Cost3

75.01

70.0-

B5.0

w0.0I

tO I 2025 101

PLANT APPROXIMATION ORDER

Figure 2-3. The LQG Closed-Loo0p Cost via Full-Order Controllers
is Compared to First-order optimal Projection Designs

for a Parabolic system

2-61



I
I

convergence to a decentralized controller whose performance was within 10% of

I the fully centralized controller.

For the case in which each subcontroller is a static (proportional)

I feedback law, it is possible to simultaneously characterize the optimal gains

in each control channel without requiring a sequential approach. A thorough

I treatment of this case, including robust stability and performance, is given in

[121] (Appendix D).

I i 2.5 Singular Control

An important generalization of the results of (24] involves the case in

which the controller includes a static feedthrough component. One technical

i issue which arises in the problem formulation is that the L2 norm of a control

signal corrupted by white noise (as a result of measurement feedthrough) is

infinite. Hence the measurement feedthrough problem is only well-posed when

either the measurement noise intensity or the control weighting matrix is
singular. As is well known from the singular control literature, however,

singular problem data often lead to complex behavior including impulsive

controls and singular arcs. The imposition of a smooth controller structure

I via the fixed-structure approach thus precludes such complex behavior.

The fixed-order state estimation and dynamic compensation results of
[29,24] were partially extended to the singular case in [78,79]. Even in theU full-order case the singular control results are novel since standard LQG

theory yields only strictly proper controllers. The results of [78,79] were

incomplete, however, since the gains associated with certain estimation and3 feedback paths were not given explicitly. For the singular estimation problem

this defect was remedied inI
Y. Halevi, "The Optimal Reduced-Order Estimator for Systems with
Singular Measurement Noise," IEEE Trans. Autom. Contr., Vol. 34,3 1989.

I where all feedback gains were explicitly characterized. In addition, this

i 2-7
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solution was shown to agree c letely with results obtained using standard

limiting methods. For the corresponding dynamic-compensation problem the

ocuplete singular solution has been derived in joint research with Professor Y.

Halevi and will be reported in [130,138,139] (Appendix E).
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13.0 ROBUST ANALYSIS AND DESIGN

1 3.1 Motivation

The purpose of feedback control is to achieve desirable performance in the
face of uncertainty. Although identification can reduce uncertainty to some

i extent, it is often impractical and residual modeling discrepancies always

remain. For example, modeling uncertainty in flexible structures may arise in

the mass, dampin, and stiffness operators. Controllers must therefore be

robust to achieve desired disturbance rejection in the presence of such
S modeling uncertainty.

3.2 Stochastic Modeling

Our approach to robust control was originally inspired by stochastic

I parameter modeling within a linear-quadratic optimization framework. In a

series of early papers [1-16], D. C. Hyland explored the ramifications of a
I multiplicative white noise model as a consequence of the minimum information

modeling technique based upon the Maximum Entropy Principle of Jaynes. The
intent was not to view the white noise process as a literal model of parameter

uncertainty, however, but rather to construct a tractable design model which

captures the effects of parameter uncertainty upon system performance.II
An interesting feature of the Maximum Entropy modeling approach was that

I the multiplicative white noise model was not to be rigorously interpreted as an

Ito differential model, but rather in terms of the Stratonovich formulation.

Recasting the Stratonovich model in terms of Ito differentials then led to

additional "correction" terms. It is precisely these terms which were shown to
play a crucial role in capturing the effects of parameter uncertainty. Such

effects include decorrelation, i.e., the decrease in cross-correlation of
system states due to parameter uncertainty, as well as equilibration, i.e., theI tendency of state variances to equalize in the presence of high levels of

uncertainty thus rendering different states indistinguishable. 2hese effectsI of parameter uncertainty are fundamental features of high-order, lightly damped

modal systems. An interesting treatment of these ideas for structural and
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acoustic analysis can be found in I

R. H. Lyon, Statistical Energy Analysis of Dynamical Systems: i
Theory and Aplication, MIT Press, Cambridge, MA, 1975.

For feedback design within fixed-structure design theory, the

Stratonovich model produces controllers possessing intuitively appealing

features. Specifically, such control laws exhibit high-authority control in

the low-frequency, well-modeled portion of the structure along with low-

authority, rate dissipative action in the high-frequency region [35] (Appendix

F). The ability to merge and unify these control regimes is a unique and

significant contribution of the Maximum Entropy approach. 3
As a control-design methodology, however, it remained to validate the

approach as a rigorous robust design technique. Optimal controllers designed

in the presence of white noise disturbances, it was reasoned, are

automatically desensitized to actual deterministic plant parameter variations.

This idea was confirmed empirically by numerical studies in [36,39] which

showed an efficient design tradeoff between performance and robustness in the

presence of structured real-valued parameter variations. Further robustness

studies confirming these results were carried out in

A. Gruzen, "Robust Reduced Order Control of Flexible
Structures," C. S. Draper Laboratory Report #CSDIT9 00, April
1986.

A. Gruzen and W. E. Vander Velde, "Robust Reduced-Order Control
of Flexible Structures Using the Optimal Projection/Maximum
Entropy Design Methodology," AIAA Guid. Nay. Contr. Conf.,
Williamsburg, VA, August 1986.

M. Cheung and S. Yurkovich, "On the Robustness of MEOP Design
versus Asymptotic LQG Synthesis," IEEE Trans. Autom. Contr., Vol.
33, 1988.

In spite of these results, it was clear that issues concerning stochastic 3
modeling, such as stochastic stability and the physical interpretation of the

model, tended to obscure the effectiveness of the technique for robust

control. Thus a crucial step in the evolution of our approach was the ability
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Ito show in (771 (Appendix F) that such controllers are guaranteed to be robustI for all cases in which the design equations are solvable. In particular, it

was shown that a second-mament stochastic stability condition in the presenceI i of a time-exponential cost weighting induces a Lyapunov function which

guarantees deterministic robust stability over a prescribed range of parameter

variations. This result thus provided the bridge to cross over from the worldI of stochastic modeling (a statistical theory) to deterministic robustness

theory (a theory of worst-case bounds).

3.3 Robust Analysis

I For a given controller, it is often necessary to assess the stability andI worst-case performance of the closed-loop system as parameters vary within a
specified range of uncertainty. This is a problem of robust analysis, whose

consideration precedes the more complex problem of robust controller synthesis.

our principal mathematical technique in robustness analysis is Lyapunov

I stability theory. Here the idea is to determine a Lyapunov function which

guarantees robust stability over a range of uncertain parameters. For linearI systems we enploy the quadratic Lyapunov function

V(x) = xTpx (1)

or, equivalently, the Lyapunov equation

S0 = ATP + PA + R (2)

I for the linear system

I = Ax + w. (3)

I The dual equation

0 = AQ + QAT + V (4)
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is also useful for robust performance analysis since V can be interpreted as

the intensity of the additive white noise signal w. In robust analysis one

typically replaces (4) by

I0 = AQ + QAT + n + V, (5)

where n is an additional nonnegative-definite matrix. Now robust stability of

the perturbed system

= (A+&iA)x + w (6) l

is assured so long as li
AAQ + QA T < n. (7) I

This can be seen by rewriting (5) as

0 = (A+4A)Q + Q(A+stA) T + [n- &A T) ] + V. (8)

Furthermore, it is also possible to guarantee robust performance since the

solution O&A of I
0 = (A4&A) QA + Q&A(A+t&A)T + V (9)

satisfies

_<Q . (10) I
The above technique, developed in [115] (Appendix G), provides a simple
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I

i approach to robust stability and performance.

m To develop a more sophisticated approach one can replace (5) by

m O=AQ+QAT+f(Q) +V (11)

I where fl(.) is now a bounding operator which satisfies

3 AAQ + OiAT < n (Q) (12)

for all variations &A in a specified uncertainty set and for all nonnegative-

definite matrices Q. This approach now guarantees the bounding a priori via

(12) and the problem is to determine whether or not there exists a solution to

The a priori bounding technique shown in (11), (12) has been given a

fairly complete treatment in [123] (Appendix G). The goal in [123] was to

I systematically investigate candidate choices for the function n(.). This

investigation also provides a unified setting for particular bounds which have

I been used in various control-design contexts. For example, for A= al, jaI 1 ,

the absolute value bound

I n(Q) = IAQ + QAlT, (13)

i where 1" replaces each eigenvalue by its absolute value, was proposed in

i S. S. L. Chang and T. K. C. Peng, "Adaptive Guaranteed Cost
Control of Systems with Uncertain Parameters", IEEE Trans.
Autom. Contr., Vol. AC-17, pp. 474-483, 1972.

5 On the other hand, writing A1 = DIE1 , the bound

3 n(Q) = D + QEQ, (14)
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where D = DIDIT and E = E TEj1 , was studied in

I. R. Petersen and C. V. Hollot, "A Riccati Equation Approach to
the Stabilization of Uncertain System", Automatica, Vol. 22, I
pp. 433-448, 1986.

D. Hinrichsen and A. J. Pritchard, "Stability Radius for U
Structured Perturbations and the Algebraic Riccati Equation",
Sys. Contr. Lett., Vol. 8, pp. 105-113, 1986.

Finally, the choice

n(Q) = aQ + a-lAIQAIT (15) I
corresponds to the bound arising from a multiplicative white noise model as

discussed in (77] and Section 3.2. We call (14) the quadratic bound (since it

is quadratic in Q) and (15) the linear bound (since it is linear in Q).

3.4 Robust Synthesis i

The principal payoff of our robust stability and performance technique is i
the ability to incorporate these bounds directly within the fixed structure

design methodology. This can be done by bounding the cost over the class of 3
parameter uncertainties prior to determining the feedback gains. The resulting

bound is then treated as an auxiliary cost which can then be minimized by

suitable feedback gains. The solution to this optimization problem is thus

guaranteed to yield robust stability and performance.

To carry out this procedure it is essential that the bound n(. ) be I
differentiable with respect to Q. Furthermore, D(.) will be differentiable
with respect to the feedback gains if it is differentiable with respect to A1

(which involves gains in the control-design setting). These requirements thus

suggest the linear bound (15) and the quadratic bound (14) as the prime

candidates for robust synthesis.
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i As discussed previously, the linear bound (15) was originally suggested by
i a multiplicative white noise model. By incorporating this bound within the

design procedure, sufficient conditions for robust estimation and robust

control were developed in [95,119] (Appendix H). In addition, a unified

treatment of robust, reduced-order modeling, estimation, and control was given

in [ 89 ] (Appendix H).-

The quadratic bound (14) has also been developed extensively within a

i design context. In [101,83,94] (Appendix I) the problems of reduced-order

modeling, estimation, and control were considered via this bound. Finally,

both the linear and quadratic bounds were considered simultaneously in [113]

(Appendix I).

3.5 H Theory

The robustness theory discussed in the previous subsections addresses the

problem of real-valued structured parameter uncertainty. In many

applications, however, uncertainty is present in the form of unstructured

perturbations to the plant transfer function. A typical case is the presence

i of high-frequency, unmodeled dynamics.

A mathematically rigorous approach to this problem involves defining a

I suitable norm on the space of plant transfer functions to characterize

uncertainty in terms of neighborhoods of the nominal plant. The resulting HO

I theory was pioneered by Zames in

G. Zames, "Feedback and Optimal Sensitivity: Model Reference
Transformations, Multiplicative Seminorms, and Approximate
Inverses," IEEE Trans. Autom. Contr., Vol. AC-26, pp. 301-320,1981.

while recent overviews were given in

B. A. Francis and J. C. Doyle, "Linear Control Theory with an H.
Optimality Criterion," SIAM J. Contr. Optim., Vol. 25, pp. 815-
844, 1987.
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B. A. Francis, A Course in & Control Theory, Springer-Verlag, n
New York, 1987. 1

The most fundamental problem of Ho control design is the so-called

Standard Problem considered by Francis: determine a feedback compensator

which minimizes the peak (worst-case) disturbance attenuation of the closed-

loop system. By introducing suitable weighting matrices and problem

transformations, solutions to the Standard Problem can be used to yield robust

controllers for unstructured plant uncertainty.

Current F. synthesis methods, however, possess two principal drawbacks:

they are computationally intensive and they often yield excessively high-order

controllers. These difficulties have been removed with the advent of new state

space solutions to the Standard Problem given in [117] (Appendix J) and

I. R. Petersen, "Disturbance Attenuation and IH Optimization: A
Design Method Based on the Algebraic Riccati equation," IEEE
Trans. Autom. Contr., Vol. AC-32, pp. 427-429, 1987.

P. P. Khargonekar, I. R. Petersen, and M. A. Rotea, "Il Optimal
Control with State Feedback," IEEE Trans. Autom. Contr., Vol. 33,
pp. 786-788, 1988.

J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, I
"State-Space Solutions to Standard H2 and H. Control Problems,"
Proc. Amer. Contr. Conf., pp. 1691-1696, Atlanta, GA, June 1988.

These papers characterize solutions to the Standard Problem in terms of

modified Riccati equations. The computational savings of this approach over

earlier methods is considerable, possibly two orders of magnitude. In

addition, the dynamic compensators obtained from these Riccati equatioys are of

the same order as the plant model. This approach thus removes the principal

drawbacks of earlier 16 synthesis methods. U
By incorporating the fixed-structure approach we have, in addition,

obtained the most general solution thus far available for the Standard

Problem. Specifically, in [117] (Appendix J) we consiCd2r the minimization of

an L performance criterion subject to a constraint on the HF closed-loop

performance. This multi-norm problem formulation thus allows the designer to
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perform tradeoffs between these caripetinq performance measures. In addition we
i impose a constraint on the order of the dynamic compensator to obtain optimal

low-order feedback controllers which satisfy the H. performance constraint.U Utilizing an eighth-order nonminimum phase example given in

R. H. Cannon, Jr., and D. E. Rosenthal, "Experiments in Control
of Flexible Structures with Noncolocated Sensors and Actuators,"
AIAA J. Guid. Contr. Dyn., Vol. 7, pp. 546-553, 1984.

E we used these results to obtain 9 dB improvement over the corresponding LQG
design (Figure 3-1).

Immediate spinoffs of these results include the problems of model

i reduction and state estimation. The H. model reduction problem [114]

(Appendix J) addresses one of the most fundamental problems of linear system
theory, namely, given a linear time-invariant system of degree n, find a linear

time-invariant transfer function of degree nm<n which minimizes the H. distance
between the full- and reduced-order systems. Although the Hankel norm model-

I reduction problem has been widely studied as in

K. Glover, "All Optimal Hankel-Norm Approximations of Linear
Multivariable Systems and Their L'?-Error Bounds," Int. J.
Contr., Vol. 39, pp. 1115-1193, 1984.

I the solution to the Hw problem had not been given previousl ,.

I For state estimation the Kalman filter provides the least squares (12)
optimal solution. In certain applications, however, it may be desirable to

minimize the worst-case frequency content of the error signal. This problem is
addressed in [116) (Appendix J) where the standard steady-state Kalman filter

I is generalized to include a bound on the F6 norm of the error signal.

Finally, it is reasonable to expect that in practice both structured and
unstructured plant uncertainty will be present. This leads to consideration of

i the Standard Problem in the presence of parametric uncertainty. Thus it is of
interest to design feedback controllers which are guaranteed to satisfy a
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Figure 3-1. The LQG/Hw Design Equations Yield 9 dB Improvenent Over The
Corresponding LQG Design for an 8th-Order Nonminimum Phase Plant
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I specified H disturbance attenuation constraint over a range of parametric

i uncertainty. This problem has been addressed in (105] (Appendix J) where the

results of [117] on H. design have been merged with these of [94,1191 on

parametrically robust design. Again the development has been carried out in

the context of fixed-order dynamic conpensation for maximal design flexibility.

I
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I

4.0 FURTHER EXTENSIONS

1 4.1 Motivation

I The previous sections have addressed two principal problems in control

design, namely, fixed-structure design and robustness. Both of these problems

concern fundamental issues in the practical implementation of feedback

controllers. In this section we extend these results in two directions in

I norder to address largex classes of design problems.

D 4.2 T

All of the feedback control theory discussed in Sections 2 and 3

addresses the problem of feedback control for regulation in the presence of

external disturbances. Many control problems, however, are of a tracking or

I servomechanism nature. While a limited class of such problems can be recast

without loss of generality as regulation problems, many important ones cannot.3 For example, the standard transformations given in

H. Kwakernaak and R. Sivan, Linear Optimal Control Systems,
Wiley, New York, 1972.

B. A. Francis, A Course in H Control Theory, Springer-Verlag, New3 York, 1987.

I assume that the comand signals can be represented as an augmentation of the

plant dynamics. There are many important cases, such as the tracking of steps

and raqps, which must be represented by uncontrollable, unstable dynamics,

where this transformation cannot be applied. Furthermore, such

transformations often ignore controller effort. To fill this gap we have

undertaken a systematic program for developing a tracking control theory

consistent with earlier developments. As a first step we have considered the

I problem of regulation about a prescribed nonzero set point, which corresponds

to the step command tracking problem. Our work in this area was originally

S motivated by results obtained in
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I

Z. Artstein and A. teizarowitz, "Tracking Periodic Signals with
the Overtaking Criterion," IEEE Trans. Autan. Contr., Vol. AC-30,
pp. 1123-1126, 1985. 3
A. Teizarowitz, "Tracking Nonperiodic Trajectories with the
Overtaking Criterion," Appl. Math. Optim., Vol. 14, pp. 155-
171, 1986. U
A. leizarowitz, "Infinite Horizon Stochastic Regulation and
Tracking With the Overtaking Criterion," Stochastics, 1987.

References (67,103] (Appendix K) present general solutions to the nonzero set 5
point problem for both static and dynamic controllers. The overall controller

configurations for these problems are shown in Figures 4-1 and 4-2. Note that

these controllers involve two components, namely, a closed-loop feedback i
component similar to a regulator and an open-loop feedforward component which

has no counterpart in the standard theory and which cannot be obtained from 3
standard transformations.

Recent activities have focused on extending the nonzero set point results

to broader classes of command and disturbance signals. It turns out that the

challenging case (as with steps and ramps) involves signals generated by

unstable command or reference dynamics. As a critical first step in addressing

this problem we have considered the problem of reduced-order steady-state I
observer design for unstable plants. These results appear in (125] (Appendix

K). This optimal subspace observer problem gives rise to yet another

projection which we denote by g. The most general estimation problem involving

all three projections r, v, and / has also been solved and will be reported in

[134,139].

4.3 Samled-Data Control i
The discussion in the previous sections has focused on continuous-time 3

systems subject to continuous-time (analog) controllers. In practice, however,

controller implementation will almost invariably utilize digital controllers

within the context of sampled-data control systems. Rigorous consideration of

such systems is critical, particularly for distributed parameter systems which

possess modal frequencies beyond the Nyquist rate of any digital ontroller.
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Hence, a rigorous theory of sampled-data control design must be developed which

I accounts precisely for all effects arising frcm analog-to-digital and digital-

to-analog operations.

U Optimal projection theory for discrete-time system was developed in [41]

and applied to sampled-data systems in [44] (Appendix L). As a next step it is

desirable to obtain robust control results. To this end, the optimal

projection equations for reduced-order discrete-time estimation and control in

Ithe presence of multiplicative white noise were obtained in [54,69] (Appendix

L). After these results were obtained, it became clear that a true sampled-

I data robustness theory must account for the exponential matrix structure which

arises from the sampling process. For example, if A+i A denotes the continuous-

time dynamics matrix, where A is the nominal matrix and eA denotes uncertainty,

then the equivalent discrete-time dynamics matrix is given by e(A+&A)h, where h

is the sample interval. Because of the exponential function, however, this

discrete-time dynamics matrix does not have the additive structure considered

in the discrete-tim theory in [54,69]. Moreover, a linear approximation for

the exponential will not be valid in the presence of system time constants near

or above the sample rate.

Although an attempt to bound this discrepancy resulted in new

inequalities in [92] and questions of decomposition in [87] (Appendix L), this

approach appears inadequate. The crucial clue to the most natural approach was

ultimately found in

A. R. Tiedemann and W. L. DeKoning, "The Equivalent Discrete-Time
Optimal Control Problem for Continuous-Time Systems with
Stochastic Parameters," Int. J. Cont., Vol. 40, pp. 449-466,
1984.

I which studied the propagation of multiplicative white noise in the presence of

A/D and D/A interfaces. Motivated by these results, we have obtained results

which extend the robust performance bounds obtained for continuous-time systems

to the sampled-data problem. Specifically, by considering the evolution of the

I linear parameter uncertainty bound over the sample interval, a robust stability
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condition was developed in [128] (Appendix L). This result is unique in thatI

it accounts directly for the exponential structure of the parameter 3
uncertainty.
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5.0 OPEN PROBIEM

1 5.1 Motivation

The value and importance of the results obtained under this project lie

largely in the foundation they provide for future research. The purpose of
I this section is to collect together various questions and problems as a guide

to future endeavors. The order of listing of these questions roughly parallels

I the order of the previous sections.

5.2 Fixed-Structure Design

Since the fixed-structure design approach involves a nonconvex3 optimization problem, there arise several questions concerning the structure of

the space of solutions.

* Do there exist verifiable a priori conditions which
guarantee stabilizability of a given linear time-invariant
plant by fixed-order dynamic compensation? As in the full-
order case, one would expect such conditions to play a
fundamental role in determining the existence of solutions to
the design equations. Conversely, when the plant is known to
be stabilizable by a controller of order nc, does the
underlying optimization problem always possess a solution?
Will the design equations always yield at least one such
stabilizing controller? How is the ability to find
stabilizing controllers affected by the choice of weightings
and noise intensities?

I • Is it possible to design all subcontrollers of a
decentralized dynamic compensator simultaneously without
performing sequential iterations? If a sequential algorithm
is used, then under what conditions is the algorithm
guaranteed to find the global minimum?

* How can the fixed-structure approach be extended to address
the simultaneous stabilization problem, i.e., the problem of
finding a single controller which stabilizes several5 different plants simultaneously?

The L2 model reduction theory of [32] (Appendix B) can
readily be extended to the problem of characterizing optimal
finite-dimensional models for infinite-dimensional systems
using the method of [37] (Appendix C). Can such finite-
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dimensional models serve as useful lumped approximations to I
distributed parameter systems? Can the L2/H6 model reduction
theory of [114] (Appendix J) be used similarly? 3
How can the fixed-structure approach be used to design
controllers with additional constraints on their internal
structure, such as prespecified pole locations? This I
question is the basis for ongoing work in [131].

5.3 Robust Analysis and Design I
I

There exist a variety of open questions concerning the conservatism and

effectiveness of the parametric robustness bounds and the H0O design equations. 5
* For which class of parameter uncertainty structures are the

quadratic Lyapunov bounds nonconservative? How can the
robustified design equations be used iteratively to reduce
design conservatism?

The multiplicative noise model was shown in [77] (Appendix F)
to guarantee deterministic robustness. However, this result I
involved a uniform right shift rather than the variable left
shift arising from the Stratonovich interpretation of the
multiplicative noise. Can it be shown rigorously that the I
Stratonovich model yields robust controllers? Furthermore,
can the relationship between Stratonovich design and positive
real controllers for modal systems be made precise?

The basis for the HO design results obtained in [117]
(Appendix J) is the quadratic bound developed for
parametrically robust control in [94] (Appendix I). This I
raises the following question: Does there exist an
alternative interpretation of the linear bound which can be
used to guarantee disturbance attenuation for some specified
class of disturbances?

The 16 control design results are virtually identical to the
optimality conditions for the problem of minimizing an
exponential-of-quadratic cost criterion as considered in I

P. R. Kumar and J. H. van Schuppen, "On the Optimal Control of
Stochastic Systems With an Exponential-of-Integral Performance
Index," J. Math. Anal. Apl., Vol. 80, pp. 312-332, 1981.

P. Whittle, "Risk-Sensitive Linear/Quadratic/Gaussian Control,"
Adv. A=l. Prob., Vol. 13, pp. 764-777, 1981. 1
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A. Bensoussan and J. H. van Schuppen, "Optimal Control of
Partially Observable Stochastic Systems With an Exponential-of-
Integral Performance Index," SIAM J. Contr. Optim., Vol. 23, pp.
599-613, 1985.

P. Whittle and J. Rkn, "A Hamiltonian Formulation of Risk-
Sensitive Linear/Quadratic/Gaussian Control," Int. J. Contr.
Vol. 43, pp. 1-12, 1986.

Is it possible to directly extend these results using the
fixed structure approach? Also, can the fixed-structure
approach be used to extend the Maximum Entropy theory of

D. Mustafa and K. Glover, "Controllers Which Satisfy a Closed-
Loop H. Norm Bound and Maximize an Entropy Integral," Proc. IEEE
Conf. Dec. Contr., Austin, TX, December 1988.

The LV/1 model reduction theory given in [114] (Appendix J)
minimizes an L2 criterion subject to a constraint on the H,
distance between the full- and reduced-order models. Can the
L2 criterion be neutralized so as to obtain a "pure" H,
result as is done in [117] (Appendix J) for full-order
control design? Can the resulting H, solution be shown to
actually characterize the H. optimal reduced-order model by
taking the F. constraint to be sufficiently small? Similar
questions apply to fixed-order control design. For exanple,
does there exist a "pure" H. reduced-order control design
theory? Can these results be shown to be necessary as well
as sufficient?

What is the generalization of the H,0 control and estimation
results to the singular problem? To the cross-weighting5 problem?

Is it possible to extend the L2 and L2/11. model reduction
results to allow the reduced-order model to be nonstrictly
proper?

I 5.4 Tracking and Sampled-Data Control

With regard to tracking and sampled-data theory a number of problems

remain to be explored.

5
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Is it possible to develop a methodology for designing
tracking controllers which applies to a broad range of
signal models? For example, the command signal may be known
exactly in advance (such as a specified square wave) while,
at the other extreme, it may only be known to be an element
of a large class of signals. For example, step comands are
known to be steps but their exact level is not known until
they actually occur during operation. Other command signals
may only be known to be outputs of system driven by random I
noise. A classification scheme based upon the degree and
type of priori knowledge of the command signal should lead to
a hierarchy of control designs ranging from poorly known to
well-known command signals. In addition, it is important to 3
distinguish between a priori command signal knowledge
available during the design phase and command signal
knowledge available during operation. The differences
between these cases can be used to account for differing
assumptions appearing in the literature. Relevant references
include i

B. D. 0. Anderson and J. B. Moore, Linear Optimal Control,
Prentice-Hall, Englewood Cliffs, NJ, 1970. I
C. D. Johnson, "Accommodation of External Disturbances in Linear
Regulator and Servomechanism Problems," IEEE Trans. Autom.
Contr., Vol. AC-16, pp. 635-644, 1971.

E. J. Davison and A. Goldenberg, "Robust Control of a General
Servcmechanism Problem: The Servo Compensator," Automatica, Vol.
11, pp. 461-471, 1975.

E. J. Davison, "The Robust Decentralized Control of a General
Servomechanism Problem," IEEE Trans. Autom. Contr., Vol. AC-21,
pp. 14-24, 1976.

E. J. Davison, "The Robust Control of a Servomechanism Problem
for Linear Time-Invariant Multivariable Systems," IEEE Trans.
Autom. Contr., Vol. AC-21, pp. 25-34, 1976. £
E. J. Davison, "Multivariable Tuning Regulators: The
Feedforward and Robust Control of a General Servomechanism
Problem," IEEE Trans. Autom. Contr., Vol. AC-21, pp. 35-47, 3
1976.

C. A. Desoer and Y. T. Wang, "Linear Time-Invariant Robust
Servomechanism Problem: A Self-Contained Exposition," in
Control and Dynamic Systems, Vol. 16, C. T. Leondes, Ed., pp. 81-
129, Academic Press, New York, 1980. 1
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I
E. J. Davison and I. J. Ferguson, "The Design of Controllers for
the Multivariable Robust Servomechanism Problem Using Parameter
Optimization Methods," IEEE Trans. Autom. Contr., Vol. AC-26, pp.
93-110, 1981.

I J. D. Turner, H. M. Chun and J.-N. Juang, "Closed-Form Solutions
for a Class of Optimal Quadratic Tracking Problems," J. Optim.
ZThy. AUL., Vol. 47, pp. 465-481, 1985.

J.-N. Juang, J. D. Turner and H. M. Chun, "Closed-Form Solutions
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How can the new subspace projection A, which arises in the
observer design problem in [125] (Appendix K), be used to
design servoconpensators? That is, can g be used to design
controllers which track the output of an unstable conmand
model?

i Is it possible to develop a theory of robust sampled-data
controller synthesis which accounts directly for the
exponential structure of the equivalent discrete-time model?
The results of [128] (Appendix L) provide a starting point in
this regard.

* What is the form of the equations for the Hm-constrained3 discrete-time control-design problem?
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Optimal Projection for Uncertain Systems (OPUS):
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Abstract

OPUS (Optimal Projection for Uncertain Systems) provides new machinery for
designing active controllers for suppressing vibration in flexible structures. The
purpose of this paper is to review this machinery and demonstrate its practical value
in addressing the structural control problem.

1. Introduction

For many years it has been widely recognized that the desire to orbit

large, lightweight space structures possessing high-performance capabilities would

require active feedback control techniques. More generally, the need for such

techniques may arise due to the combinations of either 1) moderate performance

requirements for highly flexible structures vith low-frequency modes or 2) stringent

performance requirements for semi-rigid structures with relatively high-frequency

modes (Figure 1). Applications include pointing. slewing, and aperture shape control

for optical and RF systems.

CONTROLLER AUTHORITY ANO OR
RESPONSE RANGE OF INTEREST

"Small" structures
Older generalon of spacecral/

* Mosl Cisil engineering structures
(from 1116er19lh,51s11h£ Ioading
point of view)

FREQUENCY-

3"Large- structures
H Highly Ilexible spacecralt,

tall buildings, rapid transit

structures. etc

And/or
a Stringent pointing accuracy

anld optical qulity

requirements
Now~e abolemffl lacousihsca
structural interaction)

Figure 1. The Need for Active Structural Control Arises From

Stringent Performance Requirements or Low-Frequency Modes

Springer Series in Computational Mechanics
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DISTURBANCES

U NS
TASTRUCTURE 00 R

Figure 2. Vibration Control Systems Utilize Sensors. Processors and Actuators
to Suppress Disturbances

The problem of active vibration suppression (Figure 2) entails the

following considerations: l
1. Hultiple. highly coupled feedback loops. The potentially large number of

sensors and actuators leads to a fully coupled multi-input, multi-output

feedback control system.

2. Limited actuator power. The control authority available from on-board

actuators is limited by weight. size, cost and power considerations.

3. High-dimensional models. Large structures subjected to broadband

disturbances are typically represented by high-order finite element models.

4. Limited processor capacity. Reliability and cost considerations limit the

processor capacity available for on-board real-time implementation of the

control system.

5. Highly uncertain models with structured uncertainty. Finite element models I
often exhibit significant error particularly as modal frequency increases.

Although modal testing and related identification methods may be used to

improve modeling accuracy, residual uncertainty always remains and

unpredictable on-orbit changes due to aging, thermal effects. etc.. must be I
tolerated. I

I
U
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6. Stringent performance requirements. Since active space structure control

is most relevant in precision applications, it can readily be expected that

performance specifications will be particularly stringent.

3 7. Design efficiency. Because of implementation complexity due to the

presence of multiple loops. high dimension, and high levels of uncertainty.

the control design approach should efficiently utilize both synthesis and3 analysis techniques (Figure 3).

i ANALYSIS

Figure 3. Control-System Design Must Efficiently Utilize Both
Synthesis and Analysis Techniques

These considerations pose a considerable challenge to the state-of-the-art

in control-design methodologies. For example, the presence of multiple, coupled

feedback paths essentially precludes the effectiveness of single-loop design
techniques. The sheer number of loops, their interaction, and the need to address a

host of other issues render such methods inefficient and unwieldy.

In addition to the presence of multiple loops, the high dimensionality of

dynamic models places a severe burden on control-design methodologies. For example,

although LQG (linear-quadratic-Gaussian) design is applicable to multi-loop problems.

such controllers are of the same order as the structural model (Figures 4 and 5).

Thus LQG and similar high-order controllers can be expected to plece an unacceptable

computational burden on the real-time pro,essing capability. Hence it is not
surprising that a variety of techniques hav, heen ;-. ,sed to reduce the order of LQG

controllers. A comparison of several such metaods is given in [L.

All of the above difficulties are severely exacerbated by the fact that the

dynamic (i.e.. finite element) model upon which the control design is predicated may

be highly inaccurate in spite of extensive modal identification. Hence. applicable

control-design methodologies must account for modeling uncertainties by providing

robust (i.e.. insensitive) controllers. Furthermore, because of stringentI
I
I
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HIGH-ORDER PLANT xeRn

i=Ax + Bu + Ul
CueR" ~y = CX+W yi

i= Acxc~+ Bcy D
U = CX

FULL-ORDER CONTROLLER xccRn

STEADY-STATE PERFORMANCE CRITERION

J(ACBCCc) = rn EExTRjx + UTR 2U]

Figure 4. LQG Theory Addresses the Problem of Designing a
Quadratically Optimal. Full-order Dynamic Compensator

FULL-ORDER CONTROLLER GAINS

As =A - Qi. -

C,=-R;'9~p

SEPARATED RICCATI EQUATIONS3

0o AO + OAT + V, _ Q .O (Kalman Filler)

0o ATP + PA. R1A - P:Y (Regulator)I

j=DRI8T ; =CTVlIC
2 2

Figure 5. The Optimal Full-Order (LQG) Controller Is Determined by a

Pair of Separated Riccati Equationa
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performance requirements, robust control design must avoid conservatism with respect

to modeling uncertainty which may unnecessarily degrade performance. A salient

example of conservatism is illustrated in Figure 6. If uncertainty in the modal

frequency is complexified in a transfer function setting, then the resulting pole

location uncertainty has the form of a disk. This disk. however, intersects the

right half plane in violation of energy dissipation. Hence one source of

conservatism is the inability to differentiate between physically distinct parameters

such as modal frequency and modal damping.

Im X
RIGHT-HALF-PLANE

IMPOSSIBLE

01
I Re

Re X

II
Figure 6. Corplexification of Real Parameters Hay Lead to Robustness Conservatism

Although classical methods are inappropriate for vibration control, a wide

variety of modern techniques are available. These include both multi-loop frequency-

domain methods and rime-domain techniques. A comprehensive review of such methods

will not be attempted here. Rather, we shall merely point out aspects of several

methods which motivate the philosophy of OPUS development.

As is well known, dynamic models can be transformed (at least in theory)

between the frequency and time domains. Significant differences arise, however, in

attempting to represent modeling errors. Specifically, model-error characterization

of a particular type, which is natural and tractable in one d'omain. may become

extremely cumbersome when transformed into the other domain. Fov example, consider a

state space model with parameter uncertainties arising in the system matrices

(A,B,C). Upon transforming to a frequency domain model G(s) = C(sI-A) IB the

parametric uncertainties may perturb the transfer function coefficients in aI
I
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complicated manner. A more natural measure of uncertainty for transfer functions has

been developed in (2] where system uncertainty in the frequency domain is modeled by

means of formed neighborhoods in the f-infinity topology. There are limitations with

this approach, however, in designing controllers for vibration suppression. For

example. as shown in Figure 6. complexification of real-parameter uncertainties such

as modal frequencies may yield unnecessary conservatism, while norm bounds often fail

to preserve the physical structure of parameter variations. A case in point is the

lightly damped oscillator. As shown in (A421. norm bounds predict stability over a

frequency range on the order of the damping while in fact the oscillator is I
unconditionally stable. Furthermore, with regard to processor throughput tradcoffs,

modern frequency-domain methods typically yield high-order controllers.

Although LQG addresses performance/actuator and performance/sensor

tradeoffs in a multi-loop setting, it fails to incorporate modeling uncertainty.

Thus it is not surprising, as shown in [3]. that LQG designs fail to possess

guaranteed gain margin. Since LQG designs lack such margins, attempts have been made

to apply frequency-domain techniques to improve their characteristics. One such

method, known as LQG/LTR (C4,5]) seeks to recover the gain margin of full-state- I
feedback controllers. Specifically, full-state-feedback LQR controllers are

guaranteed to remain stable in the face of perturbations of the input matrix B of the

form aB where a[l1/2.-). As shown in 16,71. however, the full-state-feedback gain

margin fails to provide robustness with respect to perturbations which are not of I
this form. For instance, the example given in [6] with B = [0 1] can be

destabilized for suitable performance weightings with perturbation B(C) = (E 11T for

arbitrarily small C in spite of the 6 dB margin. Furthermore, since LQG/LTR loop

shaping is based upon singular value norm bounds, treatment of physically meaningful

real parameter variations may lead to unnecessary conservatism. Several approaches

have been proposed for circumventing these difficulties (see. e.g.. [8]).

The importance of addressing the problem of structured uncertainty in

finite element models cannot be overemphasized. Structural characteristics such as

modal frequencies, damping ratios, and mode shapes appear explicitly in (A.BC)

state-space models as physically meaningful parameters. Uncertainty in mode shapes,

for example, which appear as columns of the B matrix, cannot in general be expected

to be of a multiplicative form in accordance with traditional gain-martin

specifications. This is precisely the problem illustrated by the example of (6]

discussed above. Furthermore, uncertainties in modal frequencies and damping ratios

must be carefully differentiated since, roughly speaking. moeal frequency

uncertainties affect only the imaginary part of the pole location while damping

uncertainty affects the real part. Although these and related observations

I
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concerning uncertainty in the dynamic characteristics of lightly damped structures

my be self evident, they have remained largely unexploited in standard control-

design methods.

2. OPUS: New Machinery for Control-System Desitn

I In view of the ability of LQG theory to synthesize dynamic controllers for

multi-input, multi-output controllers, it is not surprising that LQG forms the basis

for a variety of structural control methods. However, as discussed previously, LQG

lacks the ability to address performance/processor and performance/robustness

tradeoffs. This situation has thus motivated the development of numerous variants of

LQG which entail additional procedures which attempt to remedy these defects. OPUS.

however, is distinctly different. Rather than append additional procedures to LQG

I design. OPUS extends LQG theory itself by generalizing the basic underlying

machinery.

j As shown in Figure 5. the basic machinery of LQG consists of a pair of

separated Riccati equations whose solutions serve to directly and explicitly

synthesize the gains of an optimal dynamic compensator. The contribution of OPUS is

to directly expand this machinery. The overall approach is illustrated in Figure 7

which portrays two distinct generalizations of the basic LQG machinery. As Figure 7

illustrates, these generalizations can be developed individually when either low-

order or robust controllers are desired. The appealing aspect of OPUS, however, is

the ability to extend LQG to address both problems simultaneously in a unified

manner.

U LOG
2 RICCATI

(SEPARATED)
LOW-ORDER

CONSTRAINT PARAMETER
UNCERTAINTIES

OP us
2RICCATI * YPNW2 RICCATI *2 LYAPUNOV

|COUPLEEDCV OOTIMAL PROJECTION) (COUPLED MY UNCERTAINTY TERMS)

PARAMETER LOW-ORDER
UNCERTAINTIES CONSTRAINT

RICCATI - 2 LYAPUNOV
(COUPLEO MY OPTIMAL PROJECTION

AND UNCERTAINTY TERMS)

I Figure 7. The Standard LQG Result Is Generalized by Both the Fixed-Order

Constraint and Modelin& of Parameter Uncertainties
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In the following sections the generalizations depicted in Figure 7 will be

reviewed following the left branch. That is. the optimal projection approach to I
reduced-order controller design will first be discussed in Section 3 without

introducing plant uncertainties. In Section 4 the reduced-order constraint will be

retained while considering, in addition, uncertainties in the system model. In each

case the discussion will focus on the underlying ideas with a minimum of technical

detail.

Clearly, in order for a novel design methodology to be of pracrical value I
it must be compurationally tractable. Hence Section 5 will present an overview of

the current state of algorithm development for solving the OPUS design equations.

Finally, Section 6 will briefly summarize further OPUS generalizations of LQG theory I
which are relevant to structural control.

3. Extensions of LQG to Reduced-Order Dynamic Compensation

The simplest, most direct way to obtain optimal reduced-order controllers 3
is to redevelop the standard LQG result in the presence of a constraint on controller

dimension (Figure 8). The mathematical technique required to do this is remarkably

straightforward. Specifically, the structure and order of the controller are fixed 1
and the performance is optimized with respect to the controller gains. The resulting

necessary conditions obtained using Lagrange multipliers thus characterize the

optimal gains.

HIGH-ORDER PLANT xRn

i = Ax + Bu + w

u'Rm y xWD y.Rt

c Acic + Icy

u = Cc xc

LOW-ORDER CONTROLLER xc(R nc 3
STEADY-STATE PERFORMANCE CRITERION

J(AC.Bc,Cc) = 11m E[xTRlx + uTR 2u]I-W I
Figure 8. In Accordance With On-Board Processor Requirements, a Reduced-Order

Constraint Is Imposed on the Dimension of the Dynamic Compensator

I

I
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This parameter optimization approach as such is not new and was

investigated extensively in the 1970's. Typically. however, the optimality

conditions were found to be complex and unwieldy while offering little insight and

requiring gradient search methods for numerical solution.

One curious aspect of the parameter optimization literature is that no

attempt was made to actually use this direct method to rederive the LQC result

itself. Such an exercise, it may be surmised, might reveal hidden structure within

the optimality conditions which would shed light on the reduced-order case. Indeed.

such an approach led to the realization that sn oblique projection (idempotent

matrix) is the key to unlocking the unwieldy optimality conditions ([A7.A17]).

Although the result is mathematically straightforward, it is by no means obvious

since in the full-order (LQG) case the projection is the identity and hence not

3readily apparent.
By exploiting the presence of the projection, the necessary conditions can

be transformed into a coupled system of four algebraic matrix equations consisting of

a pair of modified Riccati equations and a pair of modified Lyapunov equations

(Figure 9). The coupling is via the oblique projection T which appears in all four

equations and which is determined by the solutions Q and ; of the modified Lyapunov

equations. A satisfying feature of the optimality conditions is that in the full-

order case the projection becomes the identity, the modified Lyapunov equations drop

out. and, since 7 = 0. the modified Riccati equations specialize to the usual

separated Riccati equations of LQG theory. Since. furthermore. G = r = nxn identity.

the standard LQG gain expressions are recovered.

3 Although the modified Riccati equations specialize to the standard Riccari

equations in the full-order case, the modified Lyapunov equations have no counterpart

in the standard theory. The role of these equations can be understood by considering

the problem of optimal model reduction alone. For this problem the optimal reduced-

order model is characterized by a pair of coupled modified Lyapunov equations

(see [A22]). Thus the modified Lyapunov equations arising in the reduced-order

dynamic-compensation problem are directly analogous to the modified Lyapunov

equations arising in model reduction alone. The modified Lyapunov equations arising

in the control problem, howeyer. are intimately coupled with the modified Riccati

equations. Hence it cannot be expected that reduced-order control-design techniques

based upon LQG will generally yield optimal fixed-order controllers (Figure 10). It

is interesting to note that several such methods discussed in Rl] are based upon

balancing which was shown in [A22] to be suboptimal with respect to the quadratic

(least squares) optimality criterion.

I
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REDUCED-ORDER CONTROLLER GAINS

Ac = I'(A-O Z-P)GT

Se = I'OCTV'
1

CC = .R4
1 BTPGT  I

COUPLED RICCATI/LYAPUNOV EQUATIONS

o = AO + OAT + V, - OO + IOIOrZT I
0= A

TP * PA+R - P P + +y R P P r

0 = (A-XP)6 + O(A-!P)T + OZO - TO O iT
o (A-03S)T P + P(A-07.) + PIP - FT!P

rank Q : rank P = rank 6P = nc

&P = GTMf' I'G = Inc

r =GTI:P(P) T = In -' 3
SR-1 CTV-C

Figure 9. The Optimal Reduced-Order Compensator In Determined by a
Pair of Modified Riccati Equations and a Pair of Modified Lyapunov Equations

Coupled by the Oblique ProjectionT

IFI
R UC TIN OPTIMAL "SPROJECTIONI

EQUATIONS I+

R CONTROLLER

FiJgure 10. The Optimal Projection Equations Provide a Direct Path to
Optimal Reduced-Order Dynamic Compensators
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In summary, the optimal projection equations for reduced-order dynamic

compensation comprise a direct extension of the basic LQG machinery to the reduced-

order control problem. The design equations, which reduce to the standard LQC result

in the full-order case, provide direct synthesis of optimal reduced-order controllers

in accordance with implementation constraints.

4. Extensions of LQG to Uncertain Hodelin

Two fundamental sources of error in modeling flexible structures are

truncated modes and parameter uncertainties. Since the optimal projection approach

permits the utilization of the full dynamics model, modal truncation can be largely

avoided. There remains. however, a tendency to truncate poorly known modes and thus

it is essential to incorporate a model of parameter uncertainty in both well-known

and poorly known components of the system. Hence the problem formulation of Figure 8

is now generalized in Figure 11 to include uncertain parameters Or. appearing in the
A. B and C matrices. The parameter ori is assumed to lie within the interval (- -8]

Iin accordance with identification accuracy. Clearly. when uncer' ainty is absent.
i.e.. when Ai. Bi. Ci = 0. the reduced-order design problem of Figure 8 is recovered.II

HIGH-ORDER, UNCERTAIN PLANT

@ Stochastic disturbance model
a Deterministic parameter uncertainty model

Ia'iI <,5

UX= (AeZajAi)x + (8+Zoj~j)u +w

y (C+EoiCi)x + w 2

r n

LOW-ORDER CONTROLLER
m Dynamic (strictly proper)
* Static (constant gain)

•Dynamic/static (nonstrictly proper)

Figure 11. Robust Optimal Projection Design Is Based Upon a
Hybrid Uncertainty Model Involving a Deterministic Parameter Uncertainty Model

and a Stochastic Disturbance Model
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A salient feature of the design model is that uncertainty is modeled in two

distinctly different ways. External uncertainty appearing as additive white noise is

modeled stochastically. Such a model appears appropriate for disturbances such as

coolant flow for which only power spectral data are available. On the other hand.

internal uncertainty appearing as parameter variations is modeled deterministically. 3
Such a model appears appropriate for uncertainty arising from directly measurable

quantities such as mass and stiffness. Thus the overall uncertainty model is hybrid

in the sense that it utilizes both deterministic and stochastic characterizations of

uncertainty.

A natural performance measure which accounts for both types of uncertainty

characterization involves the usual LQG quadratic criterion averaged over the

disturbance statistics and then maximized over the uncertain parameters (Figure 12).

Hence this performance measure incorporates on the average and worst case aspects in

accordance with physical considerations.

PERFORMANCE CRITERION 3
J(AcBc,Cc) Sup lim sup E [XTR 1 x + 2xTR12u + UTR2 u]

I t 1 
I.

Wort- Steady- Average Quadratic
C ase State

Over Over
Parameters Disturbance

StatisticsI

ROBUST PERFORMANCE PROBLEM
Minimize J(Ac,BC,Cc) over the class of robustly

stabilizing controllers (AcBc,Cc) 1
Figure 12. Performance Is Defined To Be Worst Case Over the Uncertain Parameters

and Average Over the Disturbance Statistics I

The result;ng Robust Performance Problem thus involves determining the

gains (Ac *Bc Cc) to minimize the performance J. The static gain Dc can also be 3
included but will not be discussed here. Despite the apparent complexity of the

problem, remarkably simple techniques can be used. Specifically. first note that

after taking the expected value the performance J has the form 3
J(A B C sup lim sup tr Q(t)R, (4.1)

c c (i t-),4

J(Ac.c.CI
I
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where "tr" denotes trace of a matrix. Q(t) is the covariance of the closed-loop

system, and fR is an augmented weighting matrix composed of RI. R12 and R2. The

covariance Q(t) satisfies the standard Lyapunov differential equation

IQ = (A+E. A.)Q + Q(A+ , A i)T + V. (4.2)

where A is the closed-loop dynamics. A. is composed of Ai. B. and Ci. and V is theI
intensity of external disturbances for the closed-loop system including the plant and

measurement noise.

Two distinct approaches to this problem will be considered. The first

involves bounding the performance over the class of parameter uncertainties and then

choosing the gains to minimize the bound. Since bounding precedes control design

this approach is known as robust design via a priori performance bounds. The second

approach involves exploiting the nondestabilizing nature of structural systems via5 iweak subsystem interaction.

4.1 Robust Desipn Via A Priori Performance Bounds

3The key step in bounding the performance (4.1) is to replace (4.2) by a

modified Lyspunov differential equation of the form

_q + _2A + *(_q) + V. (4.3)

3 where the bound + satisfies the inequality

E:(A.+) T . (4.4)

I over the range of uncertain parameters C.. and for all candidate feedback gains. Note
that the inequality (4.4) is defined in the sense of nonnegative-definite matrices.5 Now rewrite (4.3) by appropriate addition and subtraction as

=(A+F A I )_q + 2(A. .A.) + +(g) - E q + V. (4.5)

I Now subtract (4.2) from (4.5) to obtain

|T
_- Q = (A+o oA i)(g-Q) + (_q-Q)(A+Ia'-i Ai)T + 4(_) - , ,(A1 ,+ ). (4.6)

I
I
1
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Since by (4.4) the term

is nonnegative definite, it follows immediately that I

(4.8)

over the class of uncertain parameters. Thus the performance (4.1) can be bounded by I

J(A Bc.C c ) ( J(A *Bc.C ) lir tr gR. (4.9)

It-)I
The auxiliary cost J is thus guaranteed to bound the actual cost J. This leads to

the Auxiliary Minimization Problem: Minimize the auxiliary cost I over the

controller gains. The advantage of this approach is that necessary conditions for

the Auxiliary Minimization Problem effectively serve as sufficient conditions for

robust performance in the original problem. Since the bounding step precedes the

optimization procedure, this approach is referred to as robust design via a priori U
performance bounds. This procedure is philosophically similar to guaranteed cost

control ((9.10]). Note that since bounding precedes optimization, the bound (4.4)

must hold for all gains since the optimal gains are yet to be determined.

To obtain sufficient conditions for robust stability, the bounding function

must be specified. Since the ordering of nonnegative-definite matrices appearing l
in (4.4) is not a total ordering, a unique lowest bound should not be expected.

Furthermore. each differentiable bound leads to a fundamental extension of the

optimal projection equations and thus of the basic LQG machinery. In work thus far. 5
two bounds have been extensively investigated. Only one bound, the right

shift/multiplicative white noise bound, will be discussed here. The structured

stability radius bound introduced in (11.12] is discussed in [A43]. 3
The right shift/multiplicative whire noise bound investigated in [A29.A41]

is given by n

4(9) = ( +(ig (4.10)

where a. 0 are arbitrary scalars. Note that this bound consists of two distinct I
parts which must appear in an appropriate ratio. The first term a9R arises naturally

when an exponential time weighting e is included in the performance measure. As

is well known ([13]) this leads to a prescribed uniform stability margin for the

I
I
I
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closed-loop system (Figure 13). A uniform atability margin, no matter how large,

however, does not guarantee robustness with respect to arbitrary parameter
variations. The complementary second term -il T. is crucial in this regard.

iAX -01 =(A+al)x,a>0
Im

IX

IX
APPLY CONTROL-DESIGN TECHNIQUES

TO RIGHT-SHIFTED OPEN-LOOP SYSTEMI UNIFORM STABILITY MARGIN

(Anderson and Moore, 1969)

3 Figure 13. Open-Loop Right-Shifted Dynamics Arising From Exponential Cost Weighting
Lead to a Uniform Closed-Loop Stability Margin

Although terms of the form A i2A are unfamiliar in robust control design.
they arise naturally in stochastic differential equations with multiplicative white

noise. That is, if the uncertain parameters o are repleced by white noise processes

entering multiplicatively rather than addirively, then the covariance equation for Q

automatically includes terms of the form AiQA. The literature on systems with

multiplicative white noise is quite extensive; see (A38] for references. It should

be sVressed. however, that for our purposes the multiplicative white noise model is

not interpreted literally as having physical significance. Rather. miulriplicarive

white noise can be thought of as a useful desirn model which correctly captures the

impsct of uncertainty on the performance functional via the state covariance.

Furthermore, just as the right shift term alone does not guarantee robustness.

neither does the multiplicative white noise term. Both terms must appear

simultaneously. Roughly speaking, since multiplicative white noise disturbs the

plant though uncertain parameters, the closed-loop system is automatically

desensitized to actual parameter variations.I
I
I
U
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After incorporating the right chifr/mulriplicarive white noise bound (4.10)

into (4.3) to obtain a bound J for the performance, the optimal projection equations

can be rederived following exactly The same parameter optimization procedure

discuased in Section 3. Again, the mathematics required is but a straightforward

application of Lagrange multipliers. The additional bounding terms are carried

through the derivation to yield a direct generalization of the optimal projection

equations shown in Figure 14 with gains given in Figure 15.

s+ v1 +(AI4R 2sPs)Q(+.t+R 2ss) ' + V2  kr V1TT
O~ Q O AT S -I As 2s T) - -1V SO I~ I 2s S

O=AT.P+PA5 4 TPA +R+ (QS-1 TA -1 TJR -1P I-TITR-1 11,r

A R1  (.AQsV 2S) P(A-QsV 2s') S $"2ss + i s 2s sri

-1 A A -1 T -1 TT
(As-BsR 2 P)Q + (As-BSR2sP) + QsV2  ' 1'. 2s s1

21Cs)TA A -1  P-R 2
1sI'_ TT R

V2SCS)r P + (S
5R2 s

0 (As-1sV ' PI s V 2SC S) rs) 5 S

Figure 14. The Robustified Optimal Projection Design Equations Account for Both 1
Reduced-Order Dynamic Compensation and Parametric Uncertainty

GAINS3AC=1(A. -1 p - T

Ac =I'(A-BsR 2s s-QsV2s Cs)GT

-II8C= I Qs 2s

Cc = R'lPsGT2s NOTATION I
OP :GTMr. PG T = Inc ( r: GTp r2)

AQAT = AiQATQ AQ = !AiQB 1 , etc.
i=1 " I1A A

R2S R2 + * T(P+P)B V2s V2 + ¢(Q+O)CT

AAOCT + A)T B T + T (PP.
OC +AV12 C ~ 12 8 ~~)

Figure 15. The OPUS Controller Cains Are Explicitly Characterized as a
Direct Generalization of the Classical LQG Gains I
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The robustified optimal projection equations comprise a system of four

matrix equations coupled by both the optimal projection and uncertainty terms. When

the uncertainty terms are absent, the optimal projection equations of Figure 9 are

immediately recovered. On the other hand, if the order of the controller is set

equal to the order of the plant, then all terms involving T, can be deleted.

However, in this case the modified Lyapunov equations do not drop out since Q and P

still appear in the modified Riccari equations. Hence the basic machinery of LQC is

again extended to include a pair of Lyapunov equations coupled to a generalization of

the standard LQG equations. It is interesting to note that a related result in the

context of multiplicative noise also appeared in the Soviet literature ([14]). It

should also be pointed out that although the modified Lyapunov equations arising in

the reduced-order control-design problem have analogues in model reduction, the

modifi Lyapunov equations appearing in the full-order robuctified equations

represent new machinery not anticipated in robustness theories. Hence using

Sstraightforward mathematical techniques, the basic LQC machinery has again been
extended in novel directions.

5 1 Solving the design equations shown in Figures 14 and 15 yields controllers

with guaranteed levels of robustness. The actual robustness levels may. however, be

larger than specified by a iriori bounds. Thus, to achnve desired robustificationIlevels for the uncertainty structure specified by the a priori bounds, the design
procedure may be utilized within an iterative synthesis/analysis procedure

(Figure 16).

SYNTHESIS

CONTRUCT~-,DESIGN CONTROLLER_ STABILITYORANDE

BONS TO MINIMIZE BOUNDS GURRANED

STABILITY AND |PERFORMANCE
~ROBUSTNESS

ANALYSIS

Figure 16. Optimal Projection/Guaranteed Cost Control Provides

Direct Synthesis of Robust Dynamic Compensators

4.2 Robust Design Via Weak Subsystem Interaction

3 The mechanism by which LQC was robustified in Section 4.1 nvolved bounding

the performance over the class of narameter uncertainties and then derermining

optimal controller gains for the performance bound. As discussed in Section 2.I

I
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however. flexible structures possess special properties which may, in addition, be

exploited to achieve robustness. Specifically. aside from rigid-body modes, energy U
dissipation implies that mechanical structures are open-loop stable regardless of the

level of uncertainty. That is. flexible structures possess only nondesrabilizinz

uncertainties. Hence. in the closed loop. a given controller may or may not render a 5
particular uncertainty destabilizing. A priori bounds on controller performance

must, however, be valid for all gains since bounding precedes optimization. Hence. a

priori bounding may in certain cases fail to exploir nondestabilizing uncertainties. 3
A familiar example of a nondestabilizing uncertainty involves uncertain

modal frequencies. Such an uncertainty will not, of course, destabilize an

uncontrolled (open-loop) structure. If particular modal frequencies are poorly known 1
then it is clearly advisable to avoid applying high authority control. Hence. rather

than the right-shift approach of Figure 13, it appears advantageous (although, at

first. counterintuitive) to utilize just the opposite, namely, a left shift m
(Figure 17). Furthermore, in view of the fact that uncertainty usually increases

with modal frequency (Figure 18). a variable left shift appesr . to be more

appropriate than a uniform left shift. By left-shifting high-frequency poorly known

modes, the control-system design procedure applies correspondingly reduced authority

to modes "perceived" as highly damped. Hence the variable left shift can be roughly

thought of as a device for achieving suitable authority rolloff. As will be seen,

however, the underlying robustification mechanism, namely, weak subsystem interaction,

is far more subtle than the approach of classical rolloff techniques. It is also

interesting to note that the weak subsystem interaction approach to robustness is

entirely distinct from classical robustness approaches which utilize high loop gain

to reduce sensitivity.

p
=Ax + =(A+ - A2 )X

2 J

LARGE OPEN-LOOP SHIFT
IN HIGH-FREQUENCY REGION

LOW CLOSED-LOOP AUTHORITY

_ _ _ ) SMALL OPEN-LOOP SHIFT 3
IN LOW-FREQUENCY REGION
- HIGH CLOSED-LOOP AUTHORITY

- Re I
Figure 17. A Variable Left Shift Exploits Open-Loop Nondestabilizing Uncertainties U

I
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3 MODAL FREOUENCY

I J _ __t

COHERENT MODES INCOHERENT MODES

(SUOMI C6IliOn) (Weak Correlation)

3 hi yCentf ral Low-Auathr CanuoI

Figure 18. Hodal Uncertainty Generally Increases With Frequency

I A variable left shift can readily be introduced into the robustified

optimal projection design equations by replacing A by

A. = A+ , ( !4.1)

where A. denotes the structure of modal frequency uncertainty (Figure 19). Most

interestingly, such a modification of the dynamics matrix arises naturally from a

multiplicative white noise model defined not in the usual Ito sense but rather in the

3sense of Stratonovich. Thus, as in the a priori bounding approach, a stochastic

.071  017"11 0 " 0r - -

S+ II0 1-,' 1 1
L "

r --

c: A +/2!A 2  4 io Variable Left Shift

Figure 19. For rodal Systems With Frequency Uncertainty

the $tratonovich Correction Corresponds to a Variable Left Shift

I
I
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model serves to suggest a mechanism for robustification (Figure 20). Again it is

important to stress that the multiplicative white noise model is not interpreted

literally as having physical significance, but rather can be thought of as a useful

design model which correctly captures the impact of uncertainty on the performance

functional via the state covariance. 3
ROBUSTNESS BOUNDS

I I
OUADRATIC LYAPUNOV FUNCTION MAJORANT LYAPUNOV FUNCTION

ITO NOISE MODEL STRATONOVICH NOISE MODEL J

STOCHASTIC UNCERTAINTY MODELS 3
Figure 20. Stochastic Models and Robustness Bounds Are Fundamentally Related

In earlier work the Stratonovich dynamics model was justified by means of I

the minimum information/maximum entropy approach ([Al-A15). A central result of the

maximum. entropy approach is that the high aurhority/low authority transition of a

vibration control system from well-known low-frequency sodes to poorly known high- M
frequency modes (Figure 18) is directly reflected in the structure of the state

covariance matrix (Figure 21). A full-state feedback design applied to a simply 3
I

.. .. :Okk -0

R
0  Qnn

COHERENT = NCOHERENT

(WELL-KNOWN MODES) (POORLY KNOWN MODES)

INFORMATION REGIMES 1
Figure 21. Frequency Uncertainties in the Stratonovich Model Lead to

Suppressed Cross Correlation in the Steady-State Covariance I
I
I
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supported beam illustrates this point (Figure 22). By assuming that uncertainty in

modal frequencies increases linearly with frequency, the structure of the covariance

matrix leads directly to the control gains illustrated in Figure 23. Note that in

the high-frequency region the position gains are essentially zero and thus the

control law approaches positive-real energy dissipative rate feedback. This, of

course, is precisely the type of structural controller expected in the presence of

poor modeling information. Of course, any effective control-design theory for active

vibration suppression in flexible structures should produce energy dissipative

controllers when structural modeling information is highly uncertain.

N EONOIMENSIONAL EOUATIONS

OF MOrOn (i Z .
21

* 1E55c STATE-WIGH551)5
* UNCERTAINTIES IN OPEO-LOOP

FRLOUENCICS

3 T-_ , ('Ki ).I

X = STANDARD OfVtATIOR

1, 2!43 OF K* MOOE FREOUENCY

i SIMPlE UNCERTAINTY MODEL

SIMILYSUPPORTEO BEAM WITH FORCE ACTUATOR OWN

rUEL.-STATE IFORACK

Figure 22. The Effects of Frequency Uncertainties Can Be Illustrated5for a One-Dimensional Beam With Idealized Full-State Feedback

To carry out robustified optimal projection design in the presence of left-

shifted open-loop dynamics, it is only necessary to utilize the left-shifted dynamicsI!
matrix (4.11) in place of the right-shifted matrix. All of the robustified optimal

projection machinery, including gain expressions, can be utilized directly. It is

also important to stress that the left shift must be used in conjunction with terms

of the form AQA 
T

One explanation for the mechanism by which robustificarion is achieved is

illustrated in Figure 24. By left shifting the open-loop dynamics within the design

process, the compensator poles are similarly left-shifted. Thus the compensator

poles are effectively moved further into the left half plane away from the actual

plant poles. Since the interaction between compensator and plant poles is weakened,

the closed-loop system is correspondingly robustified with respect to uncertainties

in the plant pole locations. A sensitivity analysis of this mechanism utilizing a

uniform left shift in the context of LQG design is given in [151.

I
I
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Figure 23. The Maximum Entropy Controller Approaches Rate Feedback in the
Limit of Poor Modeling Information (Hieh Uncertainty)

A+ ¢ c• qc[A tAc.] [ A .]0 [180c 0~ce

I = 1 -*LOG Plant/Compensator Subsystem Interactions
Subsystems 

0 7 co 1
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LOG puts compensator Wider separation
poles near plant poles C€ 0(r2) shill (week Interaction)1
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c:: Decreased sensitivity to
plant verlti ons

Figure 24. The Straronovich Variable Left-Shift Model Effectively Places the
Compensator Poles Further Into the Left Half Plane Where

Plant/Compensator Interaction In Weakened
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As discussed above, the left-shift approach exploits open-loop

nondestabilizing uncertainties and thus cannot operate through a priori bounding.

Thus the actual level of robustification achieved from the robustified optimal

projection equations for a given level of uncertainty modeling cannot be predicted a

priori. i.e.. in advance of control design. Indeed. thia situation is to be expected

when nondestabilizing uncertainties are exploited in a nonconservative design theory.

Thus a suitable robust analysis technique is required for nonconservatively

determining the robustification of the closed-loop system with respect to open-loop

nondestabilizing uncertainties.

A suitable robustness analysis technique, known as majorant Lyapunov
analysis, has indeed been developed ([A42]). Essentially, this technique employs a

new type of Lyapunov function for assessing robustness due to weak subsystem

interaction. The underlying machinery consists of the block-norm matrix which is a

nonnegative matrix each of whose elements is the norm of a block of a suitably

partitioned matrix (Figure 25). A matrix which bounds the block-norm matrix in the

sense of nonnegative matrices. i.e.. element by element, is known as a majorant.3ajorants were introduced in (161 and were applied to stability analysis of

integration algorithms for ODE's in [17].

I (Ostrowski, 1961; Dahlquist, 1983)

1A 
[M1 M12-- 1

M= M21 M2

I %

[IIMiII 11M 12 11---
I I[M2111 IIM211

I"

3NONNEGATIVE CONE ORDERING

I Figure 25. The Matrix Majorant Is a Bound for the Matrix Block Norm.
i.e., the Nonnegative Hatrix Each of Whose Elsments Is the Norm of the

Corresponding Block of a Given Matrix

I
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To apply majorants to dynamical systems, the model is written in the form

shown in Figure 26. The matrix A is block diagonal and consists of subsystem

dynamics. The subsystem interactions represented by the partitioned matrix G are

assumed to be uncertain. By suitable manipulation, uncertainties in the diagonal

blocks ot A can also be captured by G. By assuming that the spectral norm (largest

singular value) of the blocks of G satisfy given bounds, the covariance block-norm

inequality is obtained (Figure 27). This inequality is interpreted in the sense of

nonnegative matrices, i.e., element-by-element, and * denotes the Hadamard (element-

by-element) product.

:(A+ G)x +w 0(A G)Q +.Q(A + G)T+V

G o 2--1

A A0 A2] G 1

I * IJ I

Known Subsystem DynamISc Uncrlsnr Subsystem Inli :lions

V[VV 11 V1- --n 021 012 -

Nolte Intensily Slate Covsrlpnce

Figure 26. The Large-Scale System Model Involves Known Local Dynamics
and Uncertain Interactions

x = (A + G)+w J E[xTRx I
t

OrQR

0 = (A + G)0 + O(A + G)T + V A: I(A 0 Aj)I

,,V1,, 11V21IF--- [,,O.,,F ,,12,IIF
V= IIV21i1F IIV211" Qs IIO,1IIF II 2 lF 1 1I N.

](G211 0

"Q <--<9Q +QgT +VIL

Figure 27. The Block-Norm Matrix of the State Covarlance Satisfies a

Lyapunov-Type Inequality Involving Nonnegative Matricea

I
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To achieve robustness, the covariance block-norm inequality is replaced by

the smajorant Lyapunov equation (Figure 28). The solution of the majorant Lyapunov

equation provides a bound (majorant) for the block norm of the covariance thereby

guaranteeing both robust stability and performance.

MAJORANT LYAPUNOV EQUATION

"aQ=SQ+QST + V

U(Gij) <- Cjj

I'D

n Robust Stability

s Robust Performance

3 Figure 28. The Corresponding Nonnegative Matrix Equation Yields a Hajorant
for the State Covariance and Hence Robust Stability and Performance

It is interesting to note that numerical solution of the majorant Lyapunov

equation requires no new techniques. Utilizing properties of H matrices, the

solution can be obtained monotonically by means of a straightforward iterative3 technique (Figure 29).

MLE has a unique solution ill (QK, K=O, 1 ... , -1 where:

0 0

QK+1 V I (, K + (\K,(T +

I (01mn /

converges. II so, then:

( irn QK

r
J - JO2S2 (tr PK)(s'Q))KK

K=1

T ^ +,
(0 = A KP K P PK AK + RK)

figure 29. By Exploiting the Properties of --Matrices.

the ajorant Lyapunov Equation Can Be Solved Monotonically by Means of a
Simple Iterative TechniqueI

I
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An illustrative application of the majorant Lyapunov equation involves

lightly damped subsystems (Figure 30). As shown in [A421 (and expected intuitively).

robustness with respect to uncertain subsystem interaction is proportional to the

frequency separation between the subsystems. The ability to capture this

robustification mechanism is a unique feature of the majorant Lyapunov function not

available from quadratic (i.e.. scalar) Lyapunov functions or vector Lyapunov

functions ([18.191). I,

Majorant Lyapunov Equation Bound- v 1(2v)2 + (w1-w2) 2  3
Figure 30. Robustness Bounds for Uncertain Coupling in Modal Systems

Are Proportional to the Frequency Separation Between Subsystems

The next step in the majorant development involves a hierarchy of finer and I
finer robustness bounds which account for higher order subsystem interactions. e.g.,

the interaction between the ith and jth subsystems via the kth subsystem. The second

member of the hierarchy (Figure 31) provides robustness guarantees with respect to

frequency uncertainties. The interesting aspect of this robustness test is the fact

that the performance bound is characterized precisely by a Stratonovich model. Hence

the Stratanovich model can be viewed as an approximation to a robustness bound, while

exploiting the Stratonovich/majorant relationship leads to a natural

synthesis/analysis scheme (Figure 32) which nonconservatively exploits open-loop

nondestabilizing uncertainties. 3

I
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SYNTHESISI UTILIZE STRATONOVICH MODEL
TO EXPLOIT NONDESTABILIZING

OPEN-LOOP UNCERTAINTIES

UTILIZE MAJORANT LYAPUNOV
EQUATION TO CHECK ROBUSTNESS WITH

RESPECT TO CLOSED-LOOP NONDESTABILIZING

SUBSYSTEM INTERACTIONI ANALYSIS
Stratonovich synthesis =approximation to majorant analysis

I Figure 31. The Stratonovich Synthesis Model Provides a first Approximation to the

IaoatAalssBud

Second member of the hierarchy:

r I

J - tr[dR] f:- 21. (tr PK)(b<KQ,>)KK
K=1

o AO + OAT + II^]+v
0O=AT^ + A + 1t[P] +R

I~C whre ott-diagonal part of Q1
3 Ja.1 = Stratonovich model operator

Tighter bound-incorporates more Information on A and 6
aPredicts stability when (A + AT) stable, G= G

a "'Nominal" performance, tr (OR], given by Stratonovich model5 Figure 32. The Refined ?4jorant Bound incorporates a Stratonovich Covariance Model
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5. Numerical Algorithms and Examples

Practical design of controllers is only possible when efficient, reliable I
algorithms are available. Indeed, the optimal projection equations are readily

solvable and have been applied to a wide variety of examples. Numerical results

appear In [A3-A6,A.AI1.A12.A14-AI6,AI8,Al9,A21-A24,A26-A28.A30-A33.A39.A42.A44.A461.

Two distinctly different algorithms have been developed thus far. namely, an

iterative method and a homotopy algorit. 3
The iterative method, developed in [A14oA16,A441 and further studied in

[20.211. is outlined in Figure 33. The nice feature of this approach is that only

a standard LQG software package is required for its implementation. The basic

motivation for the method is the observation that the main source of coupling is

via the terms involving rI. The coupling is absent, of course, when r is the

identity. i.e.. LQG. Note also that the terms involving 71 are small when R2 and

V2 are large. i.e.. when control cost is high and the measurement noise is i
significant. This case, which yields low-authority controllers, is approximately

characterized by decoupled control-design and controller-reduction operations.

Thus it is not surprising that LQG reduction techniques are most successful when

controller authority is low.

Since the TL terms occasion the greatest difficulty, it appears

advantageous to bring them into play gradually. This can be accomplished by fixing

T after each iteration to yield updated values of Q. P. Q and P. Furthermore. t is

introduced gradually by means of a to reduce its rank. 3
The crucial step of the algorithm concerns the construction of the

projection r from the pseudogramians Q and P. Specifically. 7 can be characterized

(see [A22]) as the sum of eigenprojections of QP. where each choice of

eigenprojections may correspond to a local extremal. However. the necessary

conditions do not specify whic h eigenprojections are to be selected for obtaining a

particular local solution. Nevertheless, there do exist useful methods for

constructing 7. For example, component-cost decomposition methods ([22]) when

applied within the optimal projection framework often permit efficient identification

of the global optimum.I

Although the iterative method is convenient to use because it utilizes

readily available software, it is suboptimal in the sense that it does not fully

exploit the structure of the equations. Specifically. while the iterative method

addresses a system of four nxn matrix equations, careful analysis reveals that

because of the rank deficient) of the projection the problem can be recast as four

ncxn equations. Hence. when nc is much smaller than n. which is clearly the most I
CI
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figure 33. The Iterative Hethod for Solving the Robustified OPUS Design

Equations Requires Only an LQG Software Package and

Involves Refinement of tbe Optimal Projection r
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desirable case for practical implementation. there exists considerable opportunity

for increased computational efficiency. Furthermore. and most satisfying, the

computational complexity decreases with n as is intuitively expected below that

required by LQG design. Hence the optimal projection approach has computational

complexity less than LQG reduction methods for which LQG is but the first step.

S. Richter ([23.A46]) has developed a homotopy algorithm which fully

exploits this crucial structure. Numerical experiments thus far have shown that

considerable computational savings can be achieved over the iterative method. I
Furthermore. by applying topological degree theory to investigate the branches and

character of the local extremals. it can be shown that the maximum number of possible

extremals is

(min(n.m.2))

if nc( min(n.m.) or I otherwise. Hence in most practical cases the equations

support a relatively small number of solutions.

Both the iterative method and the homotopy algorithm have been applied to a

design problem involving an 8th-order flexible structure originally due to D. Enna

and considered in [I]. Specifically. a variety of LQG reduction methods are compared I
in [1) for a range of controller authorities. These methods include:

I. Enna: This method is a freqgency-weighted, balanced realization technique I
appiicable to either model or controller reduction.

2. Glover: This method utilizes the theory of Hankel norm optimal 3
approximation for controller reduction,

3. Davis and Skelton: This is a modification of compensator reduction via 3
balancing which addresses the case of unstable controllers.

4. Yousuff and Skelton: This is a further modification of balancing for 5
handling stable or unstable controllers.

5. Liu and Anderson: In place of using a balanced approximation of the

compensator transfer functJc,; directly, this method approximates the I
component parts of a fractional representation of the compensator. I

I'I
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All of the above methods proceed by first obtaining the full-order LQG

compensator design for a high-order state-space model and then reducing the dimension

of the resulting LQG compensator.

Figure 34 summarizes the results reported in (1J for the above LQG

reduction methods along with results obtained using the iterative method for solving

the optimal projection equations. Here q2 is a scale factor for the plant

disturbance noise affecting controller authority. Clearly. LQG reduction methods

experience increasing difficulty as authority increases. i.e.. as the r, terms become

increasingly more important in coupling the control and reduction operations. for

the low authority cases, the optimal projection calculations, which were performed on

a Harris H800 minicomputer, appeared to incur roughly the same computational burden

as the LQG reduction methods. Although the optimal projection computational burden

increases with authority. comparison with the LQG reduction methods is not meaningful

because of the difficulty experienced by these methods in achieving closed-loop

stability. See [A441 for further details and for comparisons involving transient

response.

The homotopy algorithm was also applied to the example considered in (1.

One of the main goals of the development effort was to extend the range of

disturbance intensity or. equivalently, observer bandwidth. out beyond q2 = 2000. To

this end. second-order (nc = 2) controllers were obtained with relatively little

computation for q2 = 10.000. 100.000 and 1.000.000. In addition, the performance of

each reduced-order controller was within 25% of LQG. These cases can surely be

expected to present a nontrivial challenge to both the LQG reduction methods and the

iterative optimal projection method.

Numerical solution of the robustifled optimal projection equations has been

carried out for several examples. For illustrative purposes a 2x2 example was

considered in CA261 and the results illustrated in Figure 35 indicate performance/

robustness tradeoffs possible. The variable left-shift technique was applied in

[Alg] to the NASA SCOLE problem with frequency uncertainties. The robustness of LQG

and two robustified designs is shown in Figure 36. The plots illustrate the

a Idegradation in performance due to simultaneous perturbation of all modal frequencies.

Note that LQG is rendered unstable by +5% frequency perturbation while a high-

authority robustifled design improves this region to +8Z. The low-authority design

increases this region significantly while sacrificing 6% nominal performance.

A
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method 2 0.01 0.1 1 10 100 1000 2000

7 S S S S S S S
6 S S S S S S S

Enna 5 S S S S S S S
4 S S S S S S U I
3 S S S S S S S
2 S S S S U U U

7 S S S S S U S

6 S S S S U U U U
Glover 5 S S S S U U U

4 S S S S U U U
3 S S U S U U U
2 S U S U S U U

7 S U U S S S S
6 S S S S S S S

Davis& 5 S U S S S U U
Skelton 4 S S U S S U U

3 U U U U U U U
2 S U S U U U U

7 S S S S U U U

6 S S S S U U U
Yousuff & 5 S S S U U U U

Skelton 4 S S S U U U U
3 S U U U U U U
2 S S S U U U U

7 , , S . S S
7 3 S S S S S U
6 3 S S s S S S U

Liu& 5 3 S S S S S S
Anderson 4 3 S S S S S S

3 S S S S S U U
2 S S S S S S S

7 S S S S S S S
6 S S S S S S S U

Opt imal 5 8 S S S S S S

Projection 4 S S S S S S S
3 S S S S S S S
2 S S S S S S S

S - The closed-loop system Is stable
U - The closed-loop system is unstable

figure 34. The Optimal Projection Approach Was Compared to
Several LQG Reduction Techniques Over a Range of Controller

Authorities for an Example of Enns
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Figure 35. The Robuatified Optimal Projection Equations Provide
Rlobustness/Performiance Tradeoffs for a Highly Sensitive Nominal LQG Desigt.



2961

RMS LOS ERROR DEGRADATION M~

LOG
DESIGN DESIGN fl

351

30

251

23

IsI

-20 -15 -10 5 5 I i s1 23

#400AL FREQUENCY PERTURBATID14 M%

figure 36. The Stratonovich Model Robustifiea theI
LQG Dosi~ri for the NASA SCOLE Model with

Uncertain Modal Frequencies



I

1 297

6. Additional Extensions

The robustified optimal projection design machinery has been further

extended to encompass a larger number of design cases arising in practical

application. Here we merely list the extensions:

I. Discrete-time and sampled-data controllers ((A28.A30.A34.A35]).

1 2. Decentralized controllers ([A39)).

1 3. Nonstrictly proper controllers ((#371).

4. Distributed parameter systems ([A251).

U 7. Concludin& Remarks

The machinery provided by OPUS for designing active controllers for

flexible structures has been reviewed. The basic machinery is a system of coupled

Riccati and Lyapunov equations which directly generalize the classical LQG result to

include both a constraint on controller order and a model of parameter uncertainty.

The overall approach thus encompasses all major design tradeoffs arising in

vibration-suppression applications. Substantial numerical experience has been gained

through an Iterative method requiring only an LQG software package and. more

recently, by means of a highly efficient homotopy algorithm developed by S. Richter.

The overall approach opens the door for effective design of implementable controllers3 for large precision space structures.

Acknovledgment. We wish to thank Ms. Jill M. Straehla for the excellent3 preparation of this paper.
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i The Optimal Projection Equations for Model

Reduction and the Relationships Among the
I Methods of Wilson, Skelton, and Moore

DAVID C. HYLAND AND DENNIS S. BERNSTEIN, MEMBER, IEEE

Abstract-First-order necessary conditions for quadratically optimal necessary conditions which have the form of an aggregation (as,
reduced-order modeling of linear time-invarlant systems are derived in the e.g., [41) and which involve the solution of two Lyapunov
form.of a pair of modified Lyapunov equations coupled by an oblique equations each of order n + nm, where n and n. are the orders of
projection which determines the optimal reduced-order model. This form the original and reduced-order models, respectively [5], [6].
of te necessary conditions considerably simplifies previous results of Some time later, Moore proposed a quite different approach to
Wilson Ill and dearly demonstrates the quadratic extremality and model reduction based upon system-theoretic arguments as
noptimality of the balancing method of Moore 121. The possible opposed to optimality criteria. Using the eigenvalues of the
existence of multiple solutions of the optimal projection equations is product of the controllability and observability gramians (which
demonstrated and a relaxation-type algorithm is proposed for computing satisfy n x n Lyapunov equations), his method identifies
these local extreme. A component-cost analysis of the model-error subsystems which contribute little to the impulse response of the
criterion similar to the approach of Skelton 131 Is utilized at each iteration overalP system. Such "weak" subsystems are thus eliminated to
to direct the algorithm to the global minimum, obtain a reduced-order model. This technique, known as balanc-

ing, has been vigorously developed in the recent literature [71-
I. INTRODUCTION (Il ]. Since this approach is completely independent of optimality

considerations, there is, of course, no expectation that suchPTHE problem of approximating a high-order linear dynamical reduced-order models are in any sense optimal.
I system with a relatively simpler system, i.e., the A third approach to model reduction, proposed by Skelton [31,

model-reduction problem, has received considerable attention in [12], also utilizes a quadratic optimality criterion as in [1].
recent years. Among the my:iad papers devoted to this problem However, rather than proceeding from necessary conditions as
are the notable contributions of Wilson [11, Moore [2], and does Wilson, Skelton determines for a given basis the contribution
Skelton 131 with which the present paper is concerned. In his 1970 (cost) of each state in a decomposition of the error criterion and
paper, Wilson proposed an optimality-based approach to model truncates those with the least value. Although this approach is
reduction which involves minimizing the steady-state, quadrati- guided by optimality considerations, no rigorous guarantee of
cally weighted' output error when the original system and optimality is possible because of dependence on the choice of state
reduced-order model are subjected to white-noise inputs. For the space basis.
resulting parameter-optimization problem, he obtained first-order The present paper has five main objectives, the first of which is

to show how the complex optimality conditions of Wilson can be
Manuscript received October 2. 1984; revised February I. 1985. This transformed without loss of generality into much simpler and

paper is based on a prior submission of March 14. 1984. Paper recommended more tractable forms. The transformation is facilitated by
by Past Associate Editor, B. R. Barmish. This work was supported in part by exploiting the presence of an oblique (i.e., nonorthogonal)
the Air Force at Lincoln Laboratory/M.I.T., Lexington, MA. projection which was not recognized in 1112 and which arises as a

The author, are with Harris Corporation, Government Aerospace Systems direct consequence of optimality. The resulting "optimal projec-
Division, Controls Analysis and Synthesis Group. Melbourne, FL 32901. tion equations" constitute a coupled system of two n x n

The quadratic error criterion has been chosen for consideration in the
present paper because of its relation to the standard engineering practice of
stating specifications in terms of rms deviation. 7 The projection was. however, pointed out in 128, p. 291.
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modified Lyapunov equations [see (2.13). (2.14) or (;.21). "sorting out" the local extrema which satisfy the otherwise
(2.22)] whose solutions are given by a pair of rank-n, controlla- mathematically rigorous necessary conditions. Hence, we propose 3
bility and observability pseudogramians. The highly structured component cost analysis as a crucial step in bridging the gap
form of these equations gives crucial insight into the set of local between local extremality and global optimality.
extrema satisfying the first-order necessary conditions. It should be pointed out that neither the numerical algorithm

The second objective of the paper is to show how the optimal proposed in this paper nor the iterative algorithm developed in [4]
projection equations provide a rigorous extremality context for and [5] has been proven to be convergent. The principal
Moore's balancing method and to clearly demonstrate its qua- contribution of the present paper, however, is not a particular
dratic nonoptimality. Although for some problems the "weak proposed algorithm but rather the revelations concerning the
subsystem" hypothesis leads to a nearly optimal reduced-order structure of the first-order necessary conditions. The pro- U
model, we construct examples for which the reduced-order model posed numerical algorithm should be considered but a prelude to a
obtained from the balancing method is much worse with respect to full investigation into numerical algorithms for the optimal
the least-squares criterion than the quadratically optimal reduced- projection equations. It should also be noted that the presence of
order model. In general, all that can be said is that the presence of the optimal projection was not exploited in developing the *
a weak subsystem indicates that the reduced-order model obtained iterative algorithms in [4] and [51 (in fact, it did not even appear in
by truncation in the balanced basis may be in the proximity of an [1]) and hence crucial insight into local extrema was lacking.
extremal of the quadratically optimal model-reduction problem, The fifth and last objective of the paper is to point out the
however, this extremal may very well be a global maximum. It connection between the optimal projection equations for model
should be noted that in a recent paper [13] Kabamba has used reduction obtained herein and the first-order necessary conditions
bounds on the model error to demonstrate the quadratic nonopti- obtained recently for two closely related problems, namely,
mality of the balancing method. reduced-order state estimation and fixed-order dynamic compen-

The third objective of the paper is to demonstrate via an sation. U
example the mechanism responsible for the existence of multiple The plan of the paper is as follows. Section U begins with
extrema of the optimal model-reduction problem. By characteriz- general notation and definitions followed by the model-reduction
ing the optimal projection as a sum of rank-I eigenprojections of problem statement and the main theorem which presents the
the product of the rank-deficient pseudogramians, it is immedi- optimal projection equations for model reduction. A series of
ately clear that the first-order necessary conditions of the problem remarks considers various aspects of the main theorem and sets
are ambiguous in the sense that they fail to specify which n, the stage for discussing connections with [1] and [2]. Section II
eigenprojections comprise the optimal projection corresponding to contains a detailed discussion of the sense in which the optimal
a solution (i.e., global minimum) of the optimal model-reduction projection equations simplify the necessary conditions given in
problem. Specifically, since the pseudogramians can be rank [1]. and Section IV shows how the approach of [21 is approxi-
deficient in (,,) = n!/n!(n - n)! ways. there may be precisely mately extremal. Section V presents a simple example which
this many extremal projections corresponding to an identical clearly displays the possible existence of multiple extrema
number of local extrema. satisfying the optimal projection equations. This example shows

The fourth objective of the paper is to propose a numerical that the balancing method of [2] may lead to a nonoptimal
algorithm for solving the optimal projection equations by exploit- reduced-order model and suggests a heuristic procedure for
ing their structure and taking advantage of the available insights, selecting the eigenprojections comprising the projection corres-By expressing the modified Lyapunov equations in the form of ponding to the global minimum, i.e., the optimal projection. In'standard*' Lyapunov equations. an iterative relaxation-type Section VI. a numerical algorithm for solving the optimal s
algorithm is developed. The crucial aspect of the proposed projection equations is proposed and applied to an illustrative
algorithm involves extracting an oblique projection at each step example considered previously in I II and [2] as well as to some
from the product of the solutions of the Lyapunov equations. interesting examples considered recently by Kabamba in [13].
Since (%) rank-n,, projections can be extracted from the product Related results on reduced-order dynamic compensation and state
of two n x n positive-definite matrices, it is quickly evident that estimation are briefly reviewed in Section VII and suggestions for
the criterion by which the n, eigenprojections are chosen further research are given in Section VIII. The proof of the main
determines which of the numerous local extrema will be reached. theorem appears in the Appendix.
If. for example. the projection is chosen in accordance with the nm
largest eigenvalues of the product of the solutions of the Lyapunov H. PROBLEM STATEMENT AND MAIN RESULTequations, then it should not be surprising in view of the previous
discussion that a global maximum may very well be reached. In The following notation and definitions will be used throughout
this case, the first iteration of this algorithm involves Lyapunov the paper:
equations whose solutions are the controllability and observability !, r x r identity matrixgramians and the eigenvalues in question are precisely the squares Z r  transpose of vector or matrix Z
of the second-order modes 12, p. 24]. Thus, the first iteration Z- T (Z 7) - or (Z-1 )T
coincides with the (nonoptimal) balancing approach of [2]. p(Z) rank of matrix Z

Since the optimal projection equations are a consequence of tr Z trace of square matrix Z I
"ifferential (local) properties, it should not be expected that they IZi [tr ZZTI 1/2

alone would possess the inherent ability ;o identify the global Z, (i, j)-element of matrix Z
minimum. Moreover, because of the number of local extrema. diag (ai, • 0., a,) r x r diagonal matrix with listed
second-order necessary conditions appear to be useless. Instead, diagonal elements
we investigate an approach which chooses the eigenprojections E, matrix with unity in the (i, i)
according to a component-cost analysis of the model-error position and zeros elsewhere
criterion. This technique can lead to a global minimum by Ar expected value
effectively eliminating the local extrema which have considerably 11. Irl, real numbers, r x s real matrices
greater cost than the global minimum. This approach is philosoph- stable matrix matrix with eigenvalues in open
ically idtntical to the component cost analysis of Skelton (31, [12]. left half plane
Essentially, then, component cost analysis is utilized at each nonnegative-definite symmetric matrix with
iteration to direct the algorithm to the global minimum. Although matrix nonnegative eigenvalues
our application of this technique is admittedly heuristic, it should positive-definite symmetric matrix with positive
be noted that it is essentially proposed as a device for efficiently matrix eigenvalues I
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semnisimple matrix matrix similar to a diagonal matrix where 4 A 4U and n, x n. A is positive diagonal. Hence, for all[14, p. 101 n. x no. invertible S.
nonnegative matrix similar to a nonnegative-
semisimple matrix definite matixto0= o ] (sl IA)IS.I Olt-'

positive-semisimple matrix similar to a positive- 0
matrix definite matrix IS]

positive-diagonal diagonal matrix with positive and thus, (2.5) and (2.6) hold with G = [ST 010T, M _ S- 'AS
matrix diagonal elements and r - [ s-, oi -'. a

n M, ,f, n positive integers, I s n, :r n For convenience in stating the main theorem, we shall refer to
x, u y, x,, Yo n, mf, ,.,, f-dimensional vectors G, r E N6- In and positive-semisimple M E R"M-""- satisfying
A, B, C n x n, n x m, t x n matrices (2.5) and (2.6) as a (0, M, r)-factorization of A5 . Also, define
A,, Bo., Co. n. x no', no. x m, I x n,,, the positive-definite controllability and observability granians

matrices
R, V f x , m x m positive-definite W, " e A1BVTeA T dt,matrices W fo AB~e r

We consider the following problem.
Optimal Model-Reduction Problem: Given the controllable W, o e A 'CTRCeA1 dt,and observable system 0

*=Ax+Bu, 2.1 which satisfy the dual Lyapunov equations

Sy= Cx (2.2) 0=A We+ WcA T+ BVBT, (2.7)

find a reduced-order model 0=A TW, + WA + CTRC. (2.8)

o=A~xo'+Bo'u, (2.3) Main Theorem: Suppose (A., Bo, Cm) E (t. solves the
optimal model-reduction problem. Then there exist nonnegative-

Y.,= .,X (2.4) deftoeati , E R-" such that, for some (G, M, r)-l fatoriatin ofQPAn,,Bo' andCo"are given by

which minimizes the quadratic model-reduction criterion3

J(A, B, C,.) _lim ,lO-y.)TR(y- y)], A,=r AGr, (2.9)
- B, = rB, (2.10)

where the input u(t) is white noise with positive-definite intensityV. To guarantee that J is finite, it is assumed that A is stable and C - COT (2.11)
we restrict our attention to the set of admissible reduced-order and such that, with - A GTr, the following conditions are sati. fied:
models

(1 (A, B., C,): A,. is stable). p((Q)=p(P)=p(10)=n, (2 12)

Since the value of J is independent of the internal realization of the 0 = 7IA( + (0A r+ B VBT], (2. 1
transfer function corresponding to (2.3) and (2.4), we further 0=[A r +pA + CrRc. (2., I
restrict our attention to the set

Several comments are in order. First, note that the main
. _ {(A,, Bin, C)EG : theorem consists of necessary conditions in the form of two

(A., B,) is controllable and (A., C.) is observable}. modified Lyapunov equations (2.13) and (2.14) plus rank condi-
tions (2.12) which must possess nonnegative-definite solutions fa

The following lemma is needed for the statement of the main P when an optimal reduced-order model exists. We shall call
result. and P the controllability and observability pseudogramians,

Lemma 2.1: Suppose Q, P E J" are nonnegative definite, respectively, since they are analogous to W and W. and yet have
Then 12P is nonnegative semisimple. Furthermore, if p(I15 ) =  rank deficiency. The modified Lyapunov equations are coupled by
n. then there exist G, r E In and positive-semisimple M E the n X n matrix 7 which is a projection (idempotent matrix) since
lfl m'm ,such that

10P= G TMr, (2.5) z1 =G 1%G GT=,,% r -

Note that, in general, r is an oblique projection and not
'G r= ,... (2.6) necessarily an orthogonal projection since it may not be symmet-

P f Bric. We shall refer to a projection r corresponding to a solutionIProof:" By [14, Theorem 6.2.5, p. 123], there exists it x n (i.e., global minimum) of the optimal model-reduction problem asinvertible 4 such that the nonnegative-definite matrices D an- "optimal projection." It should be stressed that the form of the
$4( r and D~o ; 4 - IM, - are both diagonal. Hence, D;LJP, is optimal reduced-order model (2.7)-(2.9) is a direct consequence
nonnegative definite and 0P = 4 -DODA is nonnegative of optimality and not the result of an a priori assumption on thesemisimple. Next introduce n x n orthogonal U to effect a structure of the reduced-order model.
rearrangement of basis if necessary so that Since the optimal projection equations are first-order necessary

Ai conditions for optimality, they may possess multiple solutions
0j - corresponding to various local extrema such as local maxima,

0 local minima, saddle points, etc. The following definition will
prove useful.

'J will occasionally be referred o as the "model-reduction erro,- or. Definition 2.1: Nonnegative-definite Q, ,P E Ti""' are
simply, as the extremal if (2.12)-(2.14) are satisfied. (A,, B,, Cm) E (I* is
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extremal if there exist extremal 1, P such that (A,,B., C,,,) is ST0, M = S MS and r = s-P. Now (2.19b) follows from
given by (2.9)-(2. 11) for some (G, M, T')-factorization of Q.
The corresponding projection ris an extremal projection. .rrorr,-II-n 0

Proposition 2.1: Suppose (A,, Bo', Co') is extremal. Then the 1 0 0
model-reduction error is given by' IIt is useful to present an alternative form of the optimal model-

J(A, B., C.)=2tr [( A6- WW)AJ1. (2.15) reduction equations (2.13) and (2.14). For convenience, define
the notation

Proof. The proof is given at the end of Appendix A. E
Remark 2.1: Noting the identities 7 _i 1,,-7.

-2tr [WeW.A]=tr [CTRCWcI=tr [BVBTWoI, (2.16) Proposition 2.4: Equations (2.13) and (2.14) are equivalent,

which follow from (2.7) and (2.8), (2.15) can be written for respectively, to

extremal (Ao., B,, C,) as O=Aa+ aA T+BVBT- r, BVBrTr, (2.21)

J(Ao', B.,, Co.)=2tr [,OPA]+tr [CTRCW o= A TP+ PA + C RC- rTCTRCr,. (2.22)

=2tr [QI5 Al+tr [BVBTWo]. (2.17) Proof. By (2.20),(2.21) = (2.13) + (2 . 13 )T+ (2.13),rand
(2.13) = r(2.21). Similarly, (2.14) and (2.22) are equivalent. 0

For convenience in the following discussion, let G, M, Remark 2.2: Noting the identities
r, and r correspond to some extremal (A,, B,,, C,). Now
observe that if xo, is replaced by Sx,, where S is an arbitrary -2 tr [1 5A]=tr [CrRCC]=tr [BVBTJS]. (2.23)
nonsingular matrix, then an "equivalent" reduced-order model is
obtained with (A,, B., C,) replaced by (SAmS - , SB,, which follow from (2.20)-(2.22), (2.17) can be written for
CoS- ). Since J(A,, B,., C.,) = J(SAS-', SB., C.S- '),one extremal (A,, B.,, Cm) as
would expect the main theorem to apply also to (SAS - 1, SBm,
CmS- 1 ). Indeed, the following result shows that this transforma- J(Am,, Bm,, C,)=tr [CTRC(W,- )1=tr [BvBT(W,- P)l.
tion corresponds to the alternative factorization LIP =
(S-TG)r(SMS- )(SI ") and, moreover, that all (G, M, I')- (2.24)
factorizations of QJA are related by an invertible transformation. T

Proposition 2.2: If S E W'mx - is invertible, then = To facilitate the discussion in the following sections, we
S-TG, P = SI and X' = SMS- satisfy consider the change of basis 2 Ox. where 4 is given by

Proposition 2.3. Writing (2.1) and (2.2) as

S= rAf, (2.5)" 2 ,,L=A2+ Au, (2.25)

P0 r j,,,,. (2.6)' y =- c, (2.26)

Conversely, if 0, P E Wiflxh and invertible Kf E ",
satisfy (2.5)' and (2.6)', then there exists invertible S E Effm I"- where
such that = S-rG, P = S' and R! = SMS - 1.

Proof. The first part is immediate. The second part follows
by taking S !R I- PG TM, noting S-I = MroI rfR- and using (2.9)-(2. 11) become
the identities PGTIrf T = a and gf ! T = o rT. N

The next result shows that there exists a similarity transforma- A,, = PA( T, (2.27)
tion which simultaneously diagonalizes OPA and 7.

Proposition 2.3: There exists invertible 4' E R Xf such that Bm PA, (2.28)

0=0- A0 0 04, - r  15 4 T[ A  0 . (2.18 c,=CCT  (2.29)
0 0 0 0where

satisfy
where Aa, Ap E 71" x - are positive diagonal, A A AOAp and ol O
the diagonal elements of A are the eigenvalues of M. Conse- 01r= , dr=/.m. (2.30)
quently, 0

= T), 1= . (2.20) Note that (2.30) implies

Proof:By[14, Theorem6.2.5. p. 1231,andby(2.12),there P=lS 01, 6=,S - r 01, (2.31)

exists n x n invertible 4 such that (2.18) holds and thus (2.19a) for some n., x n, invertible S. Partitioning
also holds. Define

=li,, 01l,- , A =A and P=[1.. 014 j [ A[ , Am2]

so that (2.5)' and (2.6)' are satisfied. By the second part of h A2m A22

Proposition 2.2 there exists invertible SE N" "I'm such thatG= AG [ ], C=[C, , I

' The expression% (2.15)-(2. 17) and (2.23)-72.24) will be used in Sections
e ACd V-. wheref,,, E "m and A,,,, A,,, and C , are n,. x n,, n x m and I
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I x n., respectively, (2.27)-(2.29) and (2.31) yield Proposition 2.6. An extremal projection r is given by
A. -f SA.S- D . - s,§.. C.-C.s-'. .

This shows that the optimal reduced-order model (modulo a state d]2
transformation) can be obtained by truncating the last n - n.
states of the original system when it is expressed in the basis with where the ith eigenprojection 11,[ P[ corresponds to the ith
respect to which Q and P have the diagonal forms nonzero eigenvalue Xj of QJ5.

0 0 ]. RELATIONSHIP To WLN's FORM OF THE NECESSARY

0 0 0 0CONIInONS
Since the optimal projection 7 has the simple form The optimal model-reduction problem considered in the pre-

vious section is identical to the problem considered by Wilson in
1. 0 [1] with the minor exception that he sets R = It. In [1] G and r

are denoted by o land 9,, (2.6) appears as (15), and (2.9)-(2.11)

in this basis, we shall refer to (2.25) and (2.26) as an optimal are given by (14a. b). Note that in [1], 01 and 02 depend upon the
projection realization of (2.1) and (2.2). Note that when (2.21) solutions of a pair of (n + n,) x (n + nm) Lyapunov equationsprojecion)rareaionnoe(2.1 and (2.2). oeton bas[see (7), (9) of [I] or (A.2), (A.3) of the present paper] whoseand (2.22) are expanded in an optimal projection basis (i.e., a coefficients and nonhomogeneous terms depend in turn on A.,
basis corresponding to an optimal projection realization) they B., and C,. (see (A. 10)-(A. 15)]. The advantage of the n x n

optimal projection equations (2.21) and (2.22) over the form of
0f=,A. +A0A r+ A. VA , (2.32) the necessary conditions given in [I] [see (A.10)-(A.15)] is that

the optimal projection equations are independent ofA., B., and
o = A2,,[A0 + 92 vr, (2.33) C,.. Hence, this permits the development of numerical algorithmswhich avoid the need to choose starting values for A.,, B., and

o -, A + ApA. + CLRC,, (2.34) C.- To see this, note that although the unknowns A., B., and

C, appear explicit, in (A. 10)-(A.15), all data in the optimal
o0- Ap,,[2+ CLA02. (2.35) projection equations (2.13) and (2.14) are known except for the

solutions Q and P. Moreover, the optimal projection r, which was
If 4, in Proposition 2.23 is replaced by not recognized in [1], can be seen to play a fundamental role byfA'tpla4c e coupling the modified Lyapunov equations (2.21) and (2.22) and

[ )4 determining (since J = Gr ) A., B., and C, in (2.7)-(2.9).

which corresponds to a change of basis for the reduced-order IV. RELATONSHIP TO MOORE'S BALANCING METMOD
model obtained by truncation, then A,0 and Ap are both replaced In contrast to Wilson's method for model reduction which is
by (AoAp)" 2 and hence this can be called a balanced optimal based on optimality principles, the approach due to Moore [2]
projection basis, utilizing the terminology of [2]. Thus, in a relies on system-theoretic ideas. The main thrust of this approach
balanced optimal projection realization, A0 and Ap appearing in "is to eliminate any weak subsystem which contributes little to the
(2.32)-(2.35) are equal. impulse response matrix" (2, p. 26]. The concept of a "weak

The next result provides an interesting closed-form characteri- subsystem" is defined by means of a dominance relation [2, p. 281
zation of an extremal projection in terms of the Drazin generalized involving similarity invariants called second-order modes. Moore
inverse of 1P. Since (QP)2 = Gr2I,, and hence (06)2 = evaluates reduced-order models obtained in this way by comput-
p(QAP), the "index" of QP (see [15, p. 121]) is 1. In this case, ing the relative error in the impulse response given for MIMO
the Drazin inverse is traditionally called the group inverse and is systems by [2, p. 291
denoted by (OP)l [15, p. 124]. Since, as is easily verified, (QP)'

GrM -Ir, (2.6) leads to the following result. rr ,'

Proposition 2.5: An extremal projection r is given by e(A., B., C.) i [3 IH,(t)ll 2 dt/ 11H(I)I2 dt ,

.=QP(($)'. (2.36) where H,(t) A H(t) - Hm(t), H(t) _ R./2 CeAfBVI/Z and H.(1)
ii R II2Cme4-IBm V1. 2. To discuss this approach in the context of the

An alternative representation for an extremal projection will optimal model-reduction problem, we assume that V I,. and R =
prove useful for developing a numerical algorithm for solving 4.
(2.21) and (2.22). If Q, P E &I"I ' are nonnegative definite then Proposition 4.1: Suppose (A,., B.,, C.) E (d. Then
by Lemma 2.1 QP is nonnegative semisimple and thus there exists
invertible ' [ 0,x, such that e(A., B,., C,.)=[-J(A., B,,, Cm)/tr (W.WoA)]" 2

I QP =*i-itl*, = [J(A., B.,. C.)/tr (CrRCWc)] 1/2

where 0 = diag (wc, , .", w,) and wi > 0 are the eigenvalues of =[J(A,, B,,, C.)/tr (BVBTWo))1/ 2. (4.1)
QP. Now define the ith eigenprojection [16, p. 411 Proof., The result follows from (A.l), (A.8), and (A.9)I l[QP] t*-E,*, which hold without regard to either optimality or extremality. U

Note that Proposition 4.1 shows that the relative error in the
which is a rank-I oblique projection. Note that QP has the impulse response is minimized precisely when J(A.,, B,., C.) is
decomposition minimized. Actually, this result is to be expected since, as shownI in [I], J can be obtained alternatively by taking u(t) to be an

QP= E w,,Ih[QPl. impulse at I - 0.
i-i To draw interesting comparisons with the results of [2], choose
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n x ninvertible *suchthat'Wcrand *-rW.*-areboth wherea > 0, = 1, .- ,n,and suppose B and Caresuch that
BBr=diag ( ." ",,), CrC-diag ('ri, "", "y.).

Wc Wo= *-11-2*k, (4.2) where P, > 0, -.y > 0, i = 1, .- , n. Hypothesizing diagonal 3
where diag (a,, ., a,) and the second-order modes v, (i.e., solutions Q and P of (2.21) and (2.22) leads to
the positive square roots of the eigenvalues of W, W.) satisfy o > 2

a >... 2 o > 0. This transformation corresponds to replacing -L I
(2. 1). (2.2) by .i .= 2a ,

it=Ax-+Ru, (4.3) where each 61, i = 1, -', n is either zero or one and exactly n.
of the 6,'s are equal to one. Hence r = diag (51, - ', 5,). Note

y = C, (4.4) that there are (.,.) such solutions of the optimal projection
equations corresponding to (,,) local extrema.

where Since

W- A- BB, A Wo -*A B P, *= W, C=W 1t(45

The transformed system (4.3), (4.4), called a principal axis ' * 2  CC , iW. I'iWo

realization [171, can further be chosen so that and A, W,, and W, commute, (2.15) becomes

* Wc. r= b- rWan * - i = , (4.6) C

i.e., the balanced realization. Using (4.5), (2.7) and (2.8) become J(Am2 m, C,.)= -1 T 7A-1BBTCTC.

0=AX + T+6V 9,r, (4.7) Hence,

O=AlTx+EA+CrRC. (4.8)I0=ArZ+T, +'TR(. 1.8)J(A., B.,, Cw)= ri(I- o), (5.1)

The model-reduction procedure suggested in [21 involves
partitioning

where

A= [A 1. C[ Cd, To minimize J, it is clear that 6, should be chosen to be unity for

19 C=[C,. C21, the largest n,, elements of the set { ,},.I and zero otherwise.
B2 Although this choice is not necessarily unique, it does yield a

waaeglobal minimum. Note that choosing 6, = I is equivalent to -
where 9, E V- and A4., B,, and C., have corresponding selecting a particular eigenprojection il W, Wo] corresponding -
dimension, and extracting the reduced-order model (A,,,, B,, to the eigenvalue Oi, /4a . I
C.,). Hence, the reduced-order model (A,, A , C,,,) is extracted Remark 5.1: The expression in (5.1) can be regarded as a
from (4.3), (4.4) in essentially the same way the optimal reduced- decomposition of the cost in terms of the state variables. The idea
order model (A,, B,,, C,,) is extracted from (2.25), (2.26). To of deleting states based on their "component costs" is precisely
see how the optimal-projection realization compares to a princi- the "component cost analysis" approach of Skelton [3], [121.
pal-axis realization first note that (2.13) and (2.14) are satisfied Using the example, it is easy to see that the balancing method of
by Q = W, and A = W, when the rank conditions (2.10) are [2], which selects eigenprojections based upon the magnitude of
ignored. Indeed, since W, and W. are positive definite, the rank the eigenvalues of W, W., i.e., the (squares of the) second-order 1
conditions (2.12) do not hold. If, however, the system (2.1), (2.2) modes, may yield a grossly suboptimal reduced-order model. To
is expressed in the balanced coordinate system (4.3), (4.4) (so that this end, let
I W, = W, = ), then the assumption a,,, 0 a, I implies that
p(Wc), p(W,,) and p(WcWo) are "approximatey" equal ton, ctl, '210 6, n.l, a2=10,, 7,-, t2=10
and thus, in this sense, condition (2.10) is satisfied. This I
observation leads to the suggestion that when a,,,, IN a,," . 1, w so that
and W. are approximations to solutions a and P of the optimal r, - 0.5, r2 = 500.
projection equations and the reduced-order model (A,., a, C,.) CClearly, J is minimized (J = L' ) by choosing 5, = O, 62 = 1,U
of Moore is an approximation to some extremal (A., B., C.). which corresponds to truncating the first state variable. If,
There is no guarantee, of course, that any particular extremum however, the method of [21 is utilized, then judging by the second-
corresponds to the global minimum, or even to a local minimum, order modes

V. EXISTENCE OF MULTIPLE EXTREMA AND COMPONENT-COST a, =0.5, o2,(2.5)1/ 2 
. 10-2-0.012,

RANKING the second state variable should be deleted. This, however,In this section, we show by means of a simple example that the corresponds to choosing/St1-- 1, 62 = 0 with the higher cost J = I
optimal projection equations may possess nonunique solutions r2. The fact that the balancing approach of 121 fails to determine a
corresponding to multiple extrema, e.g., local minima or max- solution of the optimal model-reduction problem should not be
ima. We also show how decomposing the cost can identify the surprising in view of the fact that the error criterion plays no role
global minimum from among the numerous extrema. To begin, let in the balancing technique.
m = = n, R - V = I,, Although the above solution exploited the simple structure ot

this example, it is clear that choosing the global minimum from
A i diag (-a,, "", - among the local extrema involves an eigenprojection decomposi-
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tion of the cost J. To extend this idea to more general systems, e .. ,m Proposition 5. 1 that the role of balanced pains in our

invoke the following heuristic approximation. approach is played by the elements - oiA i when Approximation
Approximation 5.1: Let i define the balanced basis as in 5.1 holds. It can also be seen that the balanced gains of Kabamba

(4.6). Then *? also approximately defines a balanced optimal yield bounds on the component costs of Skelton.projection basis. i.e.,::::: ' i .e.,-- z  
2 VI. NuMEIcAl. SOLUTION OF THE OPTIMAL PRCACTION

715* - -is. (5.2) EQUATIONS

where extremal Insofar as the ultimate aim of any model-reduction technique is

f A tr*
1 -diag (61. ~t6.) (5.3) permit the development of numerical procedures for reducing

high-order models, the optimal projection equations, comprising a
and coupled system of modified Lyapunov equations, appear promis-

ing in this regard. Therefore, we present an iterative computa-
tional algorithm that exploits the structure of these equations and

iE6{0, 1}, 6 n=n,,. the available insights. The reader is strongly reminded that the
proposed algorithm is but a first attempt at solving these new
equations and alternative algorithms may yet be devised. The

Proposition 5.1: If Approximation 5.1 holds for extremal basis of this algorithm is the ability to write the modified
(A,, B,, C,) then, with f. A 1, - f, Lyapunov equations (2.21), (2.22) in the form of "'standard'"

Lyapunov equations (6.1). (6.2) such that the pseudograffnians a
J(AM, B,, C,,,)- -2tr 1fE 2Aj and Iare extracted at the final step (6.6). It follows from (2.32)-

(2.35) that (2.21), (2.22) are indeed equivalent to (6.1), (6.2)
(with k = a) and (6.6).

= 2 - A(l - 6J). (5.4) Algorithm:

Step I) Initialize 7T, I,,.
Remark 5.2: From (4.7) and (4.8), it follows that (5.4) can be Step 2) Solve for QA), ik

written either as 0= (A - T(kAr7()) (k) + dak)(A - TetA(.k))r+ BVBr, (6.1)

J(Am, B., C.)-0. [ft1fBV r ]  0=(A-r(k)AT(k))T,(k ) " + Ak(A-TL AT(k))+C RC. (6.2)

= yi(f V8T),,(l - 6,) (5.5) Step 3) Balance

I i-i ,&)a(h)(,(h) T... (, )) rT h(4 k)-1 - y k, (6.3)

or Vk)=diag (V~k), ... , g(k)), q(kaq2 k)Z ... 2tq )2O.3 J(A, Bn, Cm)-tr [f. CTRC Step 4) If k > 1 check for convergence

= qi(,crRc),(I-6). (5.6) e [ ! t. (CTRCWc)-tr (CTRCrik)dfk)(r(k))r) ,2.
Str (CT RCWc) (6.4)

I Hence, Approximation 5.1 leads to the following component-cost If e, - e I,., < tolerance then go to step 8); else continue;
ranking (again. in the sense of Skelton [31, 1123) of the (i'm) Step 5) Select n,. eigenprojections
extrema satisfying the optimal projection equations.

Component-Cost Ranking: Assume Approximation 5.1 is
valid and choose the eigenprojections comprising extremal f suchth a t I' i[ d ( ) fi ( k)] J. ( k)' E ,( ( )) - .

6, , if -o, is among the n. Step 6) UpdateI=
largest elements of the set {v-A, .. 1;

6=0 otherwise. 7(k -i) [. f ,f(fk.. (6.5)
F-1I

For comparison purposes, we shall also consider the following
ranking of the eigenprojections based upon the eigenvalues of Step 7) Check for convergence; if not, increment k and return
W, W. (i.e.. second-order modes). to Step 2).

Eigenvalue Ranking: Choose the eigenprojections comprising Step 8) Set
extremal f such that P = (T(-)) T,4(-). (6.6)a1,' i - v'-Aar is amon he n, 11,~ B"'~ (6 .I l if -oA, is among the n,,, For convenience. we shall adopt the notation (A ', B C'),

largest elements of the set { - a} ) i; where k > 0, to denote the reduced-order model obtained as a
result of applying the projection r(), and we define (see Section

6,-=0, otherwise. IV)

Remark 5.3: The observation that the second-order modes e, A ,(A(*, B5), Ck),
alone may be a poor guide to determining an optimal reduced-
order model has recently been made in 113] where bounds on the i.e., the relative error associated with (A (, B*). C0). Note that.
model-error criterion were given involving both the second-order in general, e, * e, since e, denotes the relative error only for an
modes and suitable weights called balanced gains. It can be seen extremum. i.e., when convergence has been reached.
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It should be clear from the discussion in the previous section TABLE I
that the crucial step of the algorithm is Step 5)-the choice of the RELATIVE ERROR e. - ,.
eigenprojections. For the examples which follow, we shall invoke
consistently at Step 5) either the component-cost ranking based Optina Projection
upon Approximation 5.1 or the eigenvalue ranking. Order n. Wilson [11 Moore (21 Equations
Remark 6.1: Note that in the special R = I, and V= I,

the first iteration of the algorithm yields o W, P(o) = We. - 0.001311 0.001306
If, at Step 5), we choose i, = r, r - 1. -, n., i.e., the 2 0.04097 0.03938 0.03929
eigenprojections are selected according to the eigenvalue ranking, - 0.4321 0.4268
then (A4(1) 01), C tt) is precisely the reduced-order model II
obtained Wrm taancTng. I hseape n hs htfloTBEI

We shall first consider the following example which was treated
by both Wilson and Moore. In this example, and those that follow, TABLE I1iassume R - I, V = It. EXAMPLE 6.2 wITH EIGENVALUE RANKING

Example 6. 1:

0 000 -150 4 k11k01o 1I
A= 0 0 -15 B= C=[ 00 11. 1 0.9950371897

0 0 1 -19 0 2 0.9950371691
3 0.990371690

Table I summarizes the results obtained for the three cases n. 1
3, 2, 1 utilizing the eigenvalue ranking. In each case, the

proposed algorithm converged linearly in less than eight iterations
and, in each case, improvement is evident over previously TABLE []
published results. As pointed out in [2], Wilson's result seems to EXAMPLE 6.2 WITH COMPONENT-COST RANKING

imply a lack of final convergence. For this example, the balancing
approach yields a reduced-order model close to the global k ek
minimum.

We now turn to a pair of interesting examples considered in
[13). 1 0.0995037 I

Example 6.2: 2 0.0995449
3 0.0995924

0005 -0.99 r l4 0.0996520
A=- 09 9  B=[,' CfBr. 5 0.0997346

6 0.0998648
Table H summarizes the results obtained using the eigenvalue 7 0.10011258 0.1007724

ranking and Table IIl gives the results when the component-cost 9 0.1054569
ranking is used. It is clear that the former method directs the 10 0.0982006 i
algorithm to the global maximum whereas the latter approach Ii 0.0975409
yields the global minimum. 12 0.0975342

Example 6.3: 13 0.0975330
14 0.0975329

_0.24 -0.72__ __A= 0.4 -07] 8= [1'2]. C=Br"

Table IV reports the results obtained using either the compo- TABLE IV
nent-cost ranking or the eigenvalue ranking which agree for this EXAMPLE 6.3 USING EITHER RANKING
example. If the alternative eigenprojection is selected then, as
expected, the algorithm converges to a global maximum (see k e4
Table V). The interesting aspect of this example, as discussed in
[131, is that the error el = 0.5245 (see [13]) for the reduced-order 1 0.646996 I
model obtained by either eigenprojection ranking is actually 2 0.418341
greater than el = 0.3849 obtained by choosing the alternative 3 0.220994
reduced-order model. This situation seems to indicate that proper 4 0.177276

eigenprojection selection based upon a cost decomposition is able 5 0.176576

to direct the algorithm to the global minimum in cases for which
the starting values are not nearby.

TABLE V
VII. THE OPTIMAL PROJECTION EQUATIONS FOR FIXED-ORDER EXAMPLE 6.3 WiM THE OPPOSITE RANKING

DYNAMIC COMPENSATION AND REDUCED-ORDER STATE
ESTIMATION k ¢t

We briefly discuss the relationship between the optimal I 0.7624928516Iprojection equations for model reduction and analogous results for 2 0.9999999961
reduced-order control and estimatiot problems. 3 0.999999997

Fixed-Order Dynamic-Compensation Problem: Given the
controlled system I

:[= Ax + Bu + wl, (7.1) 29 0.9999999999

y= Cx+ w2, (7.2)
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design a fixed-order dynamic compensator equations. Although proving local convergence of the proposed
algorithm appears possible, the more important problem is

2c-Axc,+Bcy. (7.3) achieving global optimality via the component cost approach.
Although the global minimum was attained for all examples

u-=C,, (7.4) attempted by the authors, it remains to treat considerably more

which minimizes the performance criterion complex systems.
An interesting extension of the main theorem involves the case

C,) A him 1xR~x+urR2 u. (73) ii which the original system (2.1), (2.2) is a distributed parameter
J(Ao B, ) i [system, e.g., a partial differential equation or a functional

differential equation. This generalization, which has been referred
where u E It', x, E 111c, n, s n, w, is white disturbance noise, to as the "ultimate reduced-order problem" 1241, may lead to the
w2 is nonsingular white observation noise, R, is nonnegative efficient generation of high-order discretizations for such systems.
definite, and R 2 is positive definite. All of the mathematical machinery required to generalize the main

Necessary conditions characterizing optimal (A,, B,,. C) have theorem to this case has already been applied to fixed-order
been developed in (181-[221 along the same lines as the main dynamic compensation in 125).
theorem. These conditions, called the optimal projection equa-
tions for fixed-order dynamic compensation, consist of four
matrix equations (two modified Riccati equations and two IX.CONCLUSION
modified Lyapunov equations) coupled by a projection. The First-order necessary conditions for quadratically optimal
modified Riccati equations, not surprisingly, are similar in form reduced-order modeling of a linear time-invariant plant are
to the covariance and cost Riccati equations of LQG theory and expressed in the form of a pair of n x n modified Lyapunov
the modified Lyapunov equations are similar to the optimal equations coupled by an oblique projection. This form of the
model-reduction equations (2.13) and (2.14). Hence, while the necessary conditions considerably simplifies the original form
modified Riccati equations govern optimal estimation and optimal given by Wilson in [1 I and clearly reveals the possible presence of
control, the additional modified Lyapunov equations characterize numerous extrema. The balancing method of Moore given in 121
"optimal reduction." The important fact that all four equations is shown to yield a reduced-order model that is "close" to an
are coupled supports the view that optimal fixed-order dynamic extremal given by the necessary conditions. A numerical example
compensators cannot, in general, be designed by. means of a shows, however, that this extremal may very well be the global
stepwise procedure, e.g., by either open-loop model reduction maximum rather than the desired global minimum. An algorithm
followed by LQG or LQG followed by closed-loop model is proposod which exploits the presence of the optimal projection
reduction. and computes the various local extrema by the choice of

Midway between the model-reduction and fixed-order dy- eigenprojections comprising the projection. A component-cost
namic-compensation problems lies the following problem. ranking of the eigenprojections, which is very much in the spirit of

Reduced-Order State-Estimation Problem: Given the ob- Skelton's method in (3] and (12], is used to direct the algorithm to
served system the global optimum.

it-Ax+ w1, (7.6) It should be pointed out that Moore's balancing appears to have
strong ties with the L. reduction problem via the Hankel norm

y-=Cx + W2, (1.7) [29]. Alternative settings for the Hankel operator, however, seemto indicate connections to the quadratic problem [30]. Finally, the
design a reduced-order state estimator robustness problem for reduced-order modeling, estimation, and

1 =control in a quadratic setting is discussed in [311.Ixe =A,,+ Bey, (7.8)

ye = CXe, (7.9) APPENDIX

which minimizes the estimation criterion PROOF OF THE MAIN THEOREM

J(A,, B,, C,) A lim 111(Lx-yT)rR(/..x-y,)1, Introducing the augmented system

where x, E Wa"., L E NP "'" and L identifies the states, or linear =.++[u,
combinations of states, whose estimates are desired. The order n,
of the estimator state x, is determined by implementation
constraints, i.e., by the computing capability available for where
realizing (7.8) and (7.9) in real time.

In view of the results already given, it should not be surprising . Je ,

(see [23]) that the optimal projection equations for reduced-order x]
state estimation form a system of three matrix equations (a pair of 1 r
modified Lyapunov equations along with a single modified Riccati [A 0 C -C.
equation) coupled by a projection which determines the gains of - 0A ' B ,,j ' -
the optimal reduced-order estimator. This intrinsic coupling leads to the expression
between the "operations" of optimal estimation (the modified
Riccati equation) and optimal model reduction (the pair cf J(A,,, B,,, C,,)=tr Q, (A.1)
modified Lyapunov equations) stresses the fact that reduced-order
estimators designed by means of either model reduction followed where 1 CrRC and the nonnegative-definite steady-state
by "full-order" state estimation or full-order estimation followed covariance Q of i is given by the (unique) solution of
by estimator reduction will generally not be optimal for the given 0 O + QAT +order. 0,,'+ /+ ,(A.2)

VIii. DIRECTIONS FOR FURTHER RESEARCH with 17 A fVT . To minimize (A. 1) subject to the constraint (A.2),
The most important area of research involves the further form the Lagrangian

development of algorithms for solving the optimal projection L(A, B.n, C, 0) A tr I XQA + (AQ + QAr+ V7)Pl
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with multipliers X 2 0 and P E IV + N,)x ta+,,). Since (I+ is an Computing (A. 19)-r(A.18) implies
open set, the standard Lagrange multiplier rule can be applied. I

Using formulas for computing partial derivatives [261, it A,,=rA Qr rirr) - I
follows that

which, since rQr, = Qz, yields (2.9). Alternatively, (2.9) can
0=L=,ArP+PA+XA. be obtained from (A.21)-G(A.20).If we now substitute (2.9) into (A. 18)-(A.21) and use the easily

Since X = 0impliesJ5 = 0 (recall A is stable), wecantake X = I verified relations (2.20), it follows that (A.19) = r(A.18) and
without loss of generality. Hence, P is the (unique nonnegative- (A.22) = G(A.21), and thus (A.19) and (A.21), are redundant.
definite) solution of Finally, G r(A. 18) rand (A.20)r yield (2.13) and (2.14), respec-

tively. Note that these last multiplications entail no loss of

O=ATr+PA+g. (A.3) generality since p(G) = p(r) = n,.
To show that the optimal projection equations entail no loss of

Again using formulas from [261 and performing some manipula- generality over (A.2)-(A.6), let 0, S be extremal and define Q~z,
Q2, P12, P2 by (.A.16) and (A.17) for some (G, M, r)-

= LA,, = Q + QP 2, (A.4) factorization of QF, and let Q1, P, satisfy (A.10) and (A.13).
0 L QP, 2  , Then it is straightforward to reverse the steps taken in the proof to

0=L,,=2(PTB+PB,)V, (A.5) arrive at (A.2)-(A.6). I
Proof of Proposition 2.1: Extremal Q, 5 leads to Q, P as

O Lc, = 2R(C Q2 - CQ12 ), (A.6) in (A.7) satisfying (A.2)-(A.6). Computing

where 1 and P have been partitioned as J(Am, Bm, C.)=tr (QCrRC-2Qi 2CLRC)+tr (QCLRC)
=tr [CrRC( W,- )1,

QP P 2  (A.7) noting that (2.13). (2.14) are equivalent to (2.21), (2.22) because

[Q ~ Q2] [pr 2 J" of (2.20) and using (2.23), leads to (2.15). *
Since (as will be seen shortly) Q2 and P 2 are positive definite, REFERENCES
define [I] D. A. Wilson, "Optimum solution of model-reduction problem."

G _4 Q;'QT ~ -pjP', (Proc. lEE, vol. 117, pp. 1161-1165. 1970.
2 2,r 12_p r, (A.8) [2] B. C. Moore. "Principal component analysis in linear systems: I

so that (A.4)-(A.6) become (2.6), (2. 10) and (2.11), respectively. Controllability. observability, and model reduction," IEEE Trans.
Automat. Contr., vol. AC-26. pp. 17-32, 1981.Next, define the nonngative-definite matrices 131 R. E. Skehon. "'Cost Decomposition of linear systems with application
to model reduction," Int. J. Contr., vol. 32. pp. 1031-1055. 1980.

Q2Q;'QT2 P , P,2P-P r  (A.9) (41 M. Aoki, "Control of lare-scale dynamic systems by aggregation," I
2 - 1 (A9IEEE Trans. Automat. Contr. vol. AC-13. pp. 246-253. 1968.

and note that (A.4) implies that (2.5) holds with M Q2P2. Since (5] D. A. Wilson, "Model reduction for multivariable systems." Int. J.and nContr., vol. 20, pp. 57-64. 1974.Q2P2 = P2 1/2(Pt' Q2PaP )Pl/2, M is positive semisimple. The rank [6] R. N. Mishra and D. A. Wilson. "'A new algorithm for optimal
conditions (2.12) follow from Sylvester's inequality. Expanding reduction of multivariable systems," Int. J. Contr., vol. 31, pp. 443- i

(A.2 and(A.) yilds466, 1980.(A.2) and (A.3) yields [7] L. Pernebo and L. M. Silverman. "Model reduction via balanced state

0=AQ+QA "+BVBr, (A. 10) space representations." IEEE Trans. Automat. Contr., vol. AC-27.
pp. 382-387. 1982.

0=AQ2+Q2A+B. 1[81 K.V. Femando and H. Nicholson. "'On the structure of balanced and+AQB +B (A.11) other principal representations of SISO systems." IEEE Trans.
Automat. Conir., vol. AC-28, pp. 228-231, 1983.

0=A,.Q 2+ Q2A r+ B. VBr (A. 12) [9] S. Shokoohi, L. M. Silverman, and P. M. Van Dooren. "Linear time-variable systems: Balancing and model reduction," IEEE Trans.O=AT,+PA+CRC,(A.13) Automat. Contr., vol. AC-28, pp. 810-822, 1983.[101 E. 1. Verriest and T. Kaidath. "On generalized balanced realizations," I
IEEE Trans. Automat. Contr., vol. AC-28, pp. 833-844. 1983.

0=A Tp 2 + P2Am -C TRC m, (A. 14) [11] E. A. Jonckheere and L. M. Silverman. "A new set of invariants for
linear !ystems-Application to reduced-order compensator design,"

O-ALP2+P 2A ,+CLRC,. (A.1S) IEEE Trans. Automat. Contr., vol. AC-28. pp. 953-964, 1983.
f12] R. E. Skelton and A. Yousuff, "Component cost analysis of large scale

Since A,, is stable and (Am, B,) is controllable, standard results systems," Int. J. Conr., vol. 37, pp. 285-304. 1983.
(e.g., [27, p. 277]) imply that Q2 is positive definite. Similarly, p 2 1131 P. T. Kabamba, "Balanced gains and their significance for balanced(g '' defii. 21model reduction," in Proc. Conf. Inform. Sci. Syst., Princeton
is positive definite. Univ., Princeton, Ni, 1984; also in IEEE Trans. Automat. Contr.,
independent of Q, and P, and thus (A. 10) and (A. 13) can be 114 C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its

Applications. New York: Wiley, 1971.ignored. Nowv, substituting (2.lO), (2.11) and the identities (151 S. L. Campbell and C. D. Meyer, Jr., Generalized Inverses of Linear
Transformations. London, England: Pitman, 1979.

Q12 =12r, P, 2' -PG r , (A.16) [161 T. Kato, Perturbation Theory for Linear Operators. New York:Springer-Veriag, 1966.

Qz=rorT, P 2= G 6GT, (A.17) (17] C..T. Mullis and R. A. Roberts, "Synthesis of minimum roundoff
noise fixed point digital filters," IEEE Trans. Circ. S~yst., vol. CAS-23, p.551-562, 1976.

into (A.ll), (A.12), (A.14), and (A.15) yields 2181 D . . "Opimality conditions for fixed-order dynamic
compensation of flexible spacecraft with uncertain parameters," AIAA

20th Aerospace Sci. Meet.. Orlando, FL, paper 82-0312, Jan. 1982.
1191 -_-, "The optimal projection approach to fixed-order compensation:

0-A,.,rarT+r r rA +nBVBrTr , (A.19) Numerical methods and illustrative results," A1AA 21st Aerospace
Sci. Meet., Reno. NV, paper 83-0303, Jan. 1983.

O= A rfrJ+f3TAm+ CTRCG ,  (A.20) 1201 D.C. Hyland and D. 5. Bernstein, "Explicit optimality conditions for
fixed-order dynamic compensation," in Proc. IEEE Conf. Dec.
Contr., San Antonio. TX, Dec 1983. pp. 161-165.
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projection" matrix which arises as a direct consequence of optimality.
These necessary conditions, by virtue of their remarkable simplicity,

.yield insight into the structure of the optimal design and permit the
development of alternative numerical algorithms (2], (4]. (7]. The
purpose of this note is to develop analogous first-order necessary
conditions for the reduced-order state-estimation problem. Since this
problem falls midway between the problems of open-loop model
reduction and closed-loop fixed-order dynamic compensation, it is not
surprising that the necessary conditions for these problems are corre-
spondingly related. Specifically, while the optimal projection equations
for model reduction consist of a system of two matrix equations (a pair of
modified Lyapunov equations) and the optimal projection equations for
fixed-order dynamic compensation comprise a system of four matrix
equations (a pair of modified Lyapunov equations plus a pair of modified
Riccati equations), the optimal projection equations for reduced-order
state estimation form a system of three matrix equations (a pair of
modified Lyapunov equations along with a single modified Riccati
equation). In each case the system of matrix equations is coupled by an
oblique projection (idempotent matrix) which determines the gains of the
optimal reduced-order system, whether it be a model, estimator, or
compensator.

The need for designing an optimal reduced-order state estimator for a
high-order dynamic system follows directly from real-world constraints
on computing capability. A further motivation is the fact that although a
system may have many degrees of freedom, it is often the case that
estimates of only a small number of state variables are actually required.
In the face of these practical motivations, numerous approaches to
designing reduced-order state estimators have been proposed. See [81 for
a recent review of previous results.

An important fact pointed out in [8] and [9) is that reduced-order
estimators desigqed by means of either model reduction followed by
"full-order" state estimation or fill-order estimation followed by
estimator reduction will not be optimal for the given order. In the present
paper this point is graphically confirmed by the fact that the three matrix
equations characterizing the optimal reduced-order state estimator reveal

The for Reduced-Order intrinsic coupling (via the optimal projection) between the "operations"
Optimal Projection Equatons of optimal estimation (the modified Riccati equation) and optimal model

State Estimation reduction (the pair of modified Lyapunov equations).

DENNIS S. BERNSTEIN AND DAVID C. HYLAND U. PROBLEM STATEMENT AND MAIN RESULT

Abstract-First-order necessary conditions for optimal, steady-tate, The following notation and definitions will be used throughout the

reduced-order state estimation for a linear, time-invarlant plant In the paper:

presence of correlated disturbance and onsliglar measurement noise n, I, n,, p positive integers, I s n, s n
sft derived In a new and highly simplified form. Is contrast to the lone X,. y, X,, Y, M,. , , p-dimensional vectors
matrix RiccatlequationarislngIthe fufl-order(IKalmaafllter)case, the A, C,L n x nl x np x n real matrices
optimal steady-state reduced-order estimator Is characterized by three A,. B,, C, n, x n, n, x I, p x n, real matrices
matrix equations (one modified Riccati equation and two modified wi(t), t 2: 0 n-dimensional white noise with nonne-
Lyapunov equations) coupled by a projection whose rank Is precisely gative-definite intensity V
equal to the order of the estimator and which determines the optimal w2(t), t 2 0 1-dimensional white noise with posi-
estimator gans. This coupling Is a graphic reminder of the suboptimality tive-definite intensity V2
of proposed approaches Involving either model reduction followed by V22  n x Imatrix satisfying 2[w(tlwz()TJ
"full-order" estimator design or full-order estimator design followed by - V 260 - S)
estimator-reduction techniques. The results given here complement R p x p positive-definite matrix
recently obtained results which characterize the optimal reduced-order I, r x r indentity matrix
model by means of a pair of coupled modified Lyapunov equations 171 Z' transpose of vector or matrix Z
and the optimal fixed-order dynamic compensator by means of a coupled Z-T (Z )-1 or (Z-1) r

system of two modified Riccatt equations and two modified Lyapunov M(Z), R(Z), p(Z) null space, range, rank of matrix Z
equations 161. a expected value

All. {q,,s real numbers, r x s real matrices
I. INTRODUCTION stable matrix matrix with eigenvalues in open left

half plane
It has recently been shown (see [11-171) that the first-order necessary nonnegative-definite matrix symmetric matrix with nonnegative

conditions for the problems of optimal model reduction and optimal fixed- eigenvalues
order dynamic compensation can be formulated in terms of an "optimal positive-definite matrix symmetric matrix with positive eigen-

h nuscrip received June 23. 19M; rised Sepwnie 14. 1984. This w wa- values
supponed in pan by Lincots Laborai. M.I.T. nonnegative-semisimple matrix matrix similar to a nonnegative-defi-

The audien are with Hams Copoation. GASD. Melbourne. Ft 32901. nite matrix

0019-9286/85/0600-0583501.00 © 1985 IEEE



584 IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. AC-30, NO. 6, JUNE 1985

positivc-semisimple matrix matrix similar to a positive-definite O-AC+1A+ (2.11) 3matrix

positive-diagonal matrix diagonal matrix with positive diagonal 0-(A - qwoC)rP+ AA - qViIC)+L rRL-rL RL,, (2.12)

elements P((Q)=p(aP)=n,. (2.13)
We consider the following optimal reduced-order state-estimation Remark 2.1: h is useful to note that (2.7) can be replaced byI

problem. Given the system

tAAx+ wi, (2.1) A,=rAG r - B,CG r . (2.7)'

Remark 2.2: Because of (2.6) the n x n matrix 7 which couples the=C+ wi, (2.2) three equations (2.10)-(2.12) is idempotent, i.e., r2 - r. In general, this
design a reduced-order state estimator "optimal projection" is an oblique projection (as opposed to an

orthogonal projection) since it is not necessarily symmetric. Note that 3
1, = A,.r, + By, (2.3) from Sylvester's inequality and (2.6) it follows that p(r) = n,. It should

be stressed that the form of the optimal reduced-order estimator (2.7)-
y,= Cx,, (2.4) (2.9) is a direct consequence of optimality and not the result of an a priori

which minimizes the error criterion assumption on the structure of the reduced-order estimator. -
Remark 2.3: To obtain the standard steady-state Kalman filter result

J(A,, B,, C,) A lim Z[(Lx-y,)TR(Lx-y,)]. for the full-order case, setp = n, - n and L - I.. Then T = G = r = I
I, and thus (2.10) reduces to the standard observer Riccati equation [10,
p. 3671 and (2.7) and (2.8) yield the usual expressions. Furthermore, itIn this formulation the matrix L identifies the states, or linear combina- follows from (2.7)' [1], Lemma 2.11 and standard results that (2.11)- U

tions of states, whose estimates are desired. The order n, of the estimator (2.13) are equivalent to the assumption that (A,, B,, C,) is controllable
state x, is determined by implementation constraints, i.e., by the and observable.
computing capability available for realizing (2.3), (2.4) in real time. Remark 2.4: Since i. is nonnegative semisimple it has a group
Hence, n, is considered to be fixed in what follows and the problem is generalized inverse (1A)# given by GrM-1' (see, e.g., [12, p. 1241). U
concerned with determining A,, B,, and C,. Hence. by (2.6) the optimal projection 7 is given by

To guarantee that J is finite it is assumed that A is stable and we restrict
our attention to the set of stable reduced-order estimators r=QMAa'),. (2.14)

( A {(A., B,, C) : A, is stable). Remark 2.5: Replacing x, by Sxe, where S is invertible, yields the I
"equivalent" estimator (SAS- 1SB,, CeS- '). Since J(A., B,. C) = I

Since the value of J is independent of the internal realization of the J(SAS-', SB, CS- ), one would expect the Main Theorem to apply
transfer function corresponding to (2.3) and (2.4), without loss of also to (SAS-', SB, C.S- ,). This is indeed the case since transforma-
generality we further restrict our attention to the set of admissible tion of the estimator state basis corresponds to the alternative factorization
estimators P= (S- TG) ra(Ms- l)(T)

Remark 2.6: Note that, for the optimal values of A, B,, and C, (2.3)
S{(,, B,, C,)E(t: assumes the observer form

(A,, B,) is controllable and (A,. C,) is observable). ,=lAGrx + r.V (y-CGrx,). (2.15)

The following lemma, whose proof is giveip in [7), is needed for the
statement of the main result. By introducing the quasi-full-state estimate 2 t G Tx, GE $14 so that rR =

Lemma 2.1: Suppose Q, A E n..." are nonnegative definite. Then it and x, = U2 E re, (2.15) can be written as
0P is nonnegative semisimple. Furthermore, if p( ) = n,, then there aexist G, r e Afl"'" and positive-semisimple M E A",'", such that =Ar.t+ Q Vi-(y-C.T). (2.16)

G- G I ,  (2.5) Note that although the implemented estimator (2.15) has the state x, E i
We, (2.15) can be viewed as a quasi-full-order estimator whose geometric

rG r= ,. (2.6) structure is entirely dictated by the projection T. Specifically, error inputs
Q.Vl- '(y - C) are annihilated unless they are contained in [O(r)) ' =For convenience in stating the Main Theorem we shall refer to G, r E 6l(ir). Hence, the observation subspace of the estimator is precisely

71""" and positive-semisimple ME fi"' e" satisfying (2.5) and (2.6) as a dt(.r?). U
(G, M, l)-factorization of . Furthermore, define the notation Remark 2.7: Although the form of (2.16) would lead one to surmise

7 1 G , 7, 4 1.-7 that the optimal reduced-order estimator is a projection of the optimal full-
and order estimator, this is not generally the case for the following simple m

reason. In the full-order case Q (which appears in q) is determined by
a r "T+ V12, solving a single Riccati equation, whereas in the reduced-order case Q

must be found in conjunction with Q and P to satisfy all three matrix
where Q E 11"". equations (2.10)-(2.12). Hence, the value of Q in the reduced-order case

Main Theorem: Suppose (A,, B,, C,) E d, solves the optimal may be different from the value of Q in the full-order case. Thus. (2.16)
reduced-order state-estimation problem. Then there exist nonnegative- may not be obtainable by simply projecting the full-order result.
definite matrices Q, 0, P E 114" such that. for some (G, m, r)- To further clarify the relationship between 0, 6, and r, we now show
factorization of QP, A,, B,, and C, are given by that there exists a similarity transformation which simultaneously

diagonalizes 1P and r.
A,=I'(A -. ViOc)G r, (2.7) Proposition 2.1: There exists invertible 4 E 11" I such that

(2.) [A 0  0] A 0(2.17)

C,= LGr (2.9) 0 0 o T 0 [

and such that the following conditions are satisfied- CIO= A 0] 1 = ' 0] * 21ab

0=- AQ+ QA T + V,- Vi I+ ,C.ViITl, (2.10) 1
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where A(). AP 6 Ll"'e are positive diagonal. A A AiAp, and the IV. CONCLUDING REMARKS
diagonal elements of A are the eigenvalues of M. Consequently, The question of multiple local minima satisfying the optimal projection

issQ - isr. (2.19) equations for reduced-order state estimation and the problem of construct-
ing numerical methods for solving thewe equations are beyond dhe scope of

Mn. PROOF~ OF THE MAIN THiEOREM ~ this note. It should be pointed out, however, that promising numerical
results for the model-reduction and fixed-order dynamic-compensation

The proof proceeds exactly as in 161. Using the fact that Q . is open, the problems have been obtained by means of iterative algorithms that take
Fritz John version of the Lagrange multiplier theorem can be used to full advantage of the presence and structure of the optimal projection [21.
rigorously derive the first-order necessary conditions 141, (7.

Finally, the results of this paper can be extended to include the
O.AO+ 04Ti. 1. (3.1) following related problem: 1) discrete-dine system/discrete-time estima-

0-Ari6,PA+9,(3.2) tor; 2) infinite-dimensional system/finite-dimensional estimator 151:, and
3) parameter uncertainties [11,. [151, [161.

0- P2QI2 PZ2, (.3)ACKNOWLEDGMENT

12 121 (3.4)
The authors wish to thank Dr. F. M. Ham for directing their attention

C,-LQzQi'1. (3.5) to the reduced-order state-estimation problem as a fruitful application of
where A . V2rthe optimal projection approach.

B A.ByV, BV 28 REFERENCES

r I[] D. C. Hyland. "Optimiality conditions for fixed-order dynamic compensation of
IL rRL -L RC,I flexible spacecraft with uncertain parameters,*" ALKA 20th Aerosp. Sci. Meet..= [C~'L C 2 .J 21 O-ad. FLe Jpta projctio paproach to fixed-order compensation: Numerical

and n +n,) (n+ n)Q, ar patitinedinton xn, x n an n, methods and illustrative results." AM4A 21st Acrosp. Sci. Mae.. Reno. NV, Jan.
and~ + ,) (i + n)Q.arearttiondinon n~ x i,, nd t, 1983, paper 3-0303.

x nt, subblocks as [31 D. C. Hyland and D. S. Bernstein, "Explicit optsmaicy conditions for fixod-order
r -~dynamic compenamion." in Proc. 22nd IEEE Contf Decision Con, San

QPQ2 o P12 Antonio. TX. Dec.- 13,. pp. 161-165.
p p, 14 D. C. Hyland. "Conipariaon of various controller-reduction methods: Suboptinal

Q Irz02 12versus Optuial pojection," in Proc. AJAA Dynam. Specialists Conif.. Palm
Expanding (3. 1) and (3.2) yields Springs. CA. May 1964. pp. 331-339.

151 D. S. Bernstetin and D. C. Hyland., "The optimal projection equations for fixed.
0 -AQ 1 + QtA T+ V1,, (3.6) order dynamic compensation of distributed parameter systems." presented at dhe

AIAA Dynam. Specialists Cotif.. Palm Springs. CA. May 1984.

0=-A Q12 + Q12A T+ Q1(BC)"+ V,2B5r. (3.7) 161 D. C. Htyland andf D. S. Bernstein. "The optimal projection equations for fixed-
order dynamic oupenston."' IEEE Trans. Automat. Comtm. vol. AC-29. pp.

0AQ + Q3Ar '+ BCQ12 + Q " 8,C) r+ B, VBr~. (3.8) 1034-1037. 1934.

0 = TP + IA (BC rP + ,2B + LTRL (39) 7) -. "The optimal projection approach to model reduction and dhe relationship
O.~rP1 P1 +(BC~r~ 12  B.+rL 39 between the methods of Wilson and Moore. " in Proc. 23rd Conf. Decision

Coffir.. Las Vegas. NV. Dec. 1984.
0 - P 11.4, + A TP, 2 + (BC) TPz - L TRC_ (3.10) [a) C. S. Sirs "Wdcdore oelling and filtering." in Control and Dynamic

System. Vol. 16. C. T'. Leoindes. Ed., 1932. pp- 55-103.
0 -A rP 2 + P2,+ CrR2C,. (31) 191 D. A. Wilson and It. N Misliro. "Design of low order estimators using reduced

Not tht (.9 issuprfuou an cn b omttd. ritng(3.8) as (se models." Int. J. Conr., vol. 23. pp. 447-456. 1979Not tht (.9)is upefluus nd an e oattd. ritng1101 K. Kwakemnaak and R. Sivan. Linear Optimal Control Systemrs. New York:1131.,1141) Wiley-Intericienoe. 1972.
0= (A,+ 5,CQIzq.)Q2+ Q-(A,+5.CQ,5Q2*)r+ 5,V 28r [III W. M. Wonharn. Linear Mfulln'anable Control.- A Geometric Approach.

New York: Springer-Verlag. 1974.

it(121 S. L. Cambell and C. D. Meyer. Jr.. Geraticred Inverses of Linearwhere Qj is the Moore-Penrose or Drazmn getneralized iniverse of Q2, it Transf'ormations. London: Pitman. 1979.follows from Ill1. Lemmas 2.1 and! 12.21 that Q2 is positive definite. 1 131 A. Albert, "'Conditions for positive and nonnegative definiteness in terms of
Similarly. (3.11) implies that Pz is positive definite. This justifies (3.4) pseudo inverse,"* SIAM4 J. AppI. Math., vol 17. pp. 434-460, 1969

S and (3.5). 1141 E, Itreindler and A. Jameson. "Conditions for nonnegativeniess of partitioned
No eiethe it x nit ngtvedfnt matrices (se 1) 11 matrices." IkEE Transs. Auttomat. Contr., vol. AC-17. pp. 147-148. 1972.

Now efie nnneatie-dfinte 131 111) [151 P. J. McLime. "Optimal linear filtering for linear system with state-dependent

Q=Q1-Q1sQ.'Q'12 0QiQ Q1, AP "p1 pipT j1 noise,"* Int. J. Coner., vol. 10, pp. 42-51. 1969.
t161 D. S. Bernstein and D. C. Hytandf. "Optimal projectiots/naximum entropy

stochastic modeling and reduced-order design syndesi' IFAC Workshop on
and note that (3.3) implies (2.5) and (2.6) with Model Error and Concepts and Compensation. Bloston. MA. June 1985.

Since Q2P2 - Pi "2(P1' 2Q2P' 2)PI"2. M is positive semnisimple. Sylves-

QiQ.Q. (3.12)

Q2  or r. p, = - PG T. 03.13)

Q, r~rrT. p2 _ GG r. (3.14)

Using (3.12)-(3. 14). (3.4) and (3.5) yield (2.8) and (2.9). Also, the
trig euand t sids (-3)d.7 yite (2.). Subsedetittinges 7~(29

into (3.6)-(3.8). (3. 10) and (3.11 I). it can be seen that (3.8) and (3. 11) are
also superfluous. Finally. linear combinations of the remaining three
equations (3.6). (3.7). and (3. 10) yield (2.1l0)-(2. 12).

0018-9296/85/0600-0595S01 .00 ©1985 IEEE

I ,.0a



I 1 034 IEEE TRANSACTIONS ON AUTOMATIC CONTROl, vOL. AC-29. NO If. NOVEMBER 1984I
U

The Optimal Projection Equations for Fixed-Order
Dynamic Compensation

DAVID C. HYLAND AND DENNIS S. BERNSTEIN

Abstract-First-order necessary conditions for quadratically optimal,
steady-state, fixed-order dynamic compensation of a linear, time-invsri.
ant plant in the presence of disturbance and observation noise are derived
in a new and highly simplified form. In contrast to the pair of matrix
Riccati equations for the full-order LQG case, the optimal steady-state
fixed-order dynamic compensator is characterized by four matrix equa-
lions (two modified Riccati equations and two modified Lyapunov
equations) coupled by a projection whose rank is precisely equal to the
order of the compensator and which determines the optimal compensator
gains. The coupling represents a graphic portrayal of the demise of the
classical separation principle for the reduced-order controller case.

I. INTRODUCTION

Because of constraints imposed by on-line computations, dynamic
controllers for high-order systems such as flexible spacecraft must be of
relatively modest order. Hence, ths paper is concern:d with the design of
quadratically optimal, fixed-order (i.e.. reduced-order) dynamic compen-
sation for a plant subject to stochastic disturbances and nonsingularmeasurement noise. Since white noise in all measurement channels

precludes direct output feedback (see Section 11), only purely dynamiccontrollers are considered. The requirements for resolution of this
optimization problem include the following.

1) Conditions for the existence of an optimal, stabilizing compensator
of the prescribed order. (In the full-order case these are the usual
stabilizability and detectability conditions of LQG theory.)

2) Stationary conditions, i.e.. first-order necessary conditions, ren-
dered in a tractable form to facilitate developments in items 3) and 4)
below. (In the full-order case these conditions are precisely the LQG gain
relations together with the regulator and observer Riccati equations.)

3) Sufficiency conditions. i.e., additional restrictions on solutions of
the first-order necessary conditions which characterize local minima and
single out the global minimum. (in the full-order case the global
minimum is distinguished by the unique nonnegative-dcfinite solutions to
the LQG Riccati equations.)

4) Convergent numerical algorithms for simultaneous satisfaction of
the necessary and sufficient conditions. (In the full-order case numerical
algorithms have been devised which take full advantage of the highly
structured form of the Riccati equations.)

Manuscript received August 15. 1983: rcvised February 14. 1983 This paper is based
on a prior submission of March 1O. 1983. Papcr recomrmerided by P R Kumar. Past
Chaitran of the Stochastic Control Committee This work wa..s supponed by theDepar'nent of the Air Force and %*s perhorrod at Lincoln Lihoratry. M I TTeauthors are with thu Control% Anal)sis andJ Synthesis Group. Hams Corp.. GASO.

i Melbourne. FL 32902
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The present paper deals exclusively with item 2). Although the white observation noise with / x I positive-definite intensity V2; w, and
stationary conditions for the fixed-order compcnsation problem have been w2 arc uncorrelated and have zero mean. We note that the assumptions of
writen down (see 111- 1121. for examplc), full exploitation has undoubt- nonsingular control weighting and nonsingular observation noise preclude
edly been impeded by their extreme complexity [sec (3.3)-(3. I )). What the use of direct output feedbark as in
has been lacking. to quote the insightful remarks of 191, "is a deeper
understanding of the structural coherence of these equations." The u(t) = C ,x(t) + D,(t) (2.6)
contribution of the present paper is to show how the originally very since J is undefined unless (see [71)
complex stationary conditions can be transformed without loss of

generality to much simpler and more tractable forms. The resulting tr[DrTR2DV2]=0 ((=) R2D, V2 =0). (2.7)
equations (2. 10)-(2.17) preserve the simple form of LQG relations for the To guarantee that J is finite and independent of initial conditions we
gains in terms of covariance and cost matrices which, in turn, are restrict our attention to the set of admissible stabilizing compensatorswU
determined by a coupled system of two modified Riccati equations and
two modified Lyapunov equations. This coupling, by means of a aA(A, 1, ,:A4 A B, i smttclysal
projection (idempotcnt matrix) whose rank is pecisely equal to the order -, 8C ,iof the compensator, represents a graphic portrayal of the demise of theBC A t a
classical separation principle for the reduced-order controller case. When, where A is the closed-loop dynamics matrix. Since the value of J is
as a special case, the order of the compensator is required to be equal to independent of the internal realization oi" the compensator, we can further
the order of the plant, the modified Riccati equations reduce to the restrict our attention to
standard LQG Riccati equations and the modified Lyapunov equations I
express the proviso that the compensator be minimal, i.e., controllable a. A= {(A. B,, C,) E d:
and observable. Since the LQG Riccati equations as such are nothing
more than the necessary conditions for full-order compensation, we (A, B) is controllable and (C,, A,) is observable].
believe that the "optimal projection equations" provide a clear and simple For the following lemma call a square matrix nonnegative (respectively, I
generalization of standard LOG theory. positive) semisimple if it has a diagonal Jordan form and nonnegative

Since we are concerned with optimal fixed-order compensator design, (respectively, positive) eigenvalues. Let I, denote the r x r identity
our approach does not represent yet another model- or controller- matrix
reduction scheme along the lines of [13]-[17]. Indeed, the optimal Lemma 2.1: Suppose E M R x - are nonnegative definite. Then
projection equations, by virtue of their relatively transparent structure, JP is nonnegative semisimple. Furthermore, if rank Q)5 = n, then there
can reveal the extent to which the design equations of a given ad hoc exist G, r E e" and positive-semisimple M E Rlc""' such that
reduction scheme conform to the necessary conditions for optimality. For i
example, the oblique projection which arises in the present formulation a5= GTrMr, (2.8) I
may not be of the form 1'011 even in the basis corresponding to the
"balanced" realization [131-116]. These issues are discussed in (18] rGT=I.C. (2.9)
where the results of 119] are simplified by means of the approach of the rI.
present paper and where the balancing method of [13] is reinterpreted in Proof. The result is an immediate consequence of [20, Theorem
the context of optimality theory. 6.2.5, p. 123].

The fact that the optimal projection equations consist of four coupled For convenience in stating the Main Theorem, define
matrix equations. i.e., two modified Riccati equations and two modified 1 BR- ,Br , 

Z 4_ cry; 'C
Lyapunov equations, should not be at all surprising for the following =
simple reason. Reduced-order control-design methods often involve either and call G, M, and r satisfying (2.8) and (2.9) a (G, M, r)-factorization
LOG applizd to a reduced-order model or model reduction applied to a of 1.
full-order LQG design. Both approaches, then, involve the solution of Main Theorem: Suppose (Ac, B,, Cc) E d, solves the steady-state
precisely four equations: two Riccati equations (for LOG) plus two fixed-order dynamic-compensation problem. Then there exist n x n
Lyapunov equations (for model reduction via balancing, as in 1131). The nonnegative-definite matrices Q, P. Q, and P such that A,, B, and C, are I
coupled form of the optimal projection equations is thus a strong given by
reminder that the LQG and order-reduction operations cannot be iterated
but must, in a certain sense, be performed simultaneously. A, = r(A- Q2 - P)G T, (2.10)

B,=rQCTv1 .  (2.11)

11. PROBLEM STATEMENT AND THE MAIN THEOREM C,= -R;BrpGr (2.12)

Given the control system for some (G, M, r)-factorization of OP, and such that with 7 _ G l" the

x() = Ax(t) + Bu(i) + 4,(t), t2. I) following conditions are satisfied:

Y(t)= Cx(t) + w() (2.2) 0= (A - rQI)Q+ Q(A _rQS) T+ V + rQQ7T. (2.13)

design a fixed-order dynamic compensator 0 = (A - SP7) P + P(A -.ZPr) + R + PEPT, (2.14)

.,(t) = A,x,(t) + By(t), (2.3) 0 = 71(A - EP)o+ O(A - 1P) T+ QtQ], (2.15)

u(t) = C,xA() (2.4) 0 = [(A - QZ) TP +A6A - Q!) + PtP1r, (2.16) 3
which minimizes the steady-state performance criterion rank 0 = rank P = rank (2) = n,. (2.17)

J(A,, B_. C,) 4 lim 9Ex(t)rRx(t)+ u(t)rR.u(t)] (2.5) Remark 2.1: Because of (2.9) the n x n matrix r which couples the
four equations (2 13)-(2.16) is idempotent, i.e., 72 = r. In general this

where: x E ;1", u E A', y E E l' , xy E R', , n, < n, A, B, C, A,, B,, "optimal projection" is an oblique projection (as opposed to an
C, R1, and R2 are matrices of appropriate dimension with R, (symmetric) orthogonal projection) since it is not necessarily symmetric. Note that
nonnegative definite and R2 (symmetric) positive definite: w, is white Sylvester's inequality and (2.9) imply that rank r = n,.
disturbance noise vith n x n nonnegative-definite intensity V, and w2 is Remark 2.2: Using the relations 7- = ' and P = Pr [see (3.12)], I

I
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equivalent form 0=AQ, + Q,A T+BCQT + Q11ABC)r+ v1, (3.6)

O=AQ4QAT+ V-QIQ+r, QSQYT, (21)2A 1 +QA+CQ+(8C T  37U =A rP+PA +R 1 -PSP+ rTPrp 7  (2.19) 0=AQi+ QzAr+ BCQ 1 2+ Q.(BC)T+ VB (3.)

0=(4~~~ -t)+~4-))~Q~~
4 ~T. (2.20) 0-A TP1 +PA + (8,.C) rT+Pl 2 8BC+R 1 . (3.9)3 E (2.21) 0=P 2A,+ArP+(BC)rP,+PBC, (3.'0)

where 7,L I4 - 7. Note that in the full-order case n, = n, 7 = G =1r
4, and thus (2.18) and (2.19) reduce to the standard observer and 0 (3.11)A+(BT,2+P Bc+CeRC

regulator Riccati equations and (2.10)-(2.12) yield the usual LQG Writing (3.8) as (see 126], 1271)Iexpressions. Furthermore, it can be shown that (2.20), (2.2 1), and (2.17)
are equivalent to the assumption that (Ac, B,. Q~ is controllable and 0=(, CQ*Q (A+B Q-Q* +B ~
observable.

Remark 2.3: Since CAis nonnegative semidsimple it has a group where Q2 is the Moore-Penrose or Drazin generalized inverse of Q, itUgeneralized inverse (OA1 given by GTMf-ir (see e.g., [21, p. 1241). follows from 128, Lemmas 2.1 and 12.21 that Q, is positive definite.
Hence, hy (2.9) the optimal projection r is given by Similarly, (3.11) implies that P2 is positive definite. This justifies (3.4)

and (3.5).
O= POP) (2.22) Now define the n x n ponnegativc-definite matrices (see [261, [27])3Remark 2.4: The modified Riccati equations (2.13) and (2.14) are Q 4 Q, -Q1"Ql;Q I. P 4 P, - PIP;'Pr

similar to the (single) "extended algebraic Riccati equation" which arises2 1'

in the static output feedback problem (see, e.g., f22]). 12 4 QlQ-'Q12 P,,P-'PT
Remark 2.5: Replacing x. by Sx~, where S is invertible, yields die and note that (3.3) implies (2.8) and (2.9) withI 'equivalent" compensator (SAS -, SB,, C5 -1). Since~ J(A,, B~, Q~
=J(SAS -. SB,, CS- ) one would expect the Main Theorem to apply G a Qj-'Qr, m 4 Q2P,, r 1 - P-'Pf

also to (SAS ', SB, CS5 -'). This is indeed the case since utrasforima- 2 1 2

tion of the compensator state basis corresponds to the alternative Since QP 2 = P 2 (P2'12Q 2P2/2)P2'/2 , M is Positive Semisimple.
reariktos.( G~ S S)(I) ee(0 o eae Sylvester's iniequality yields (2.17). Note also that

Remarlk 26: By introducing the quasi-full-state estimatef 4G "xcE 0=4, P=1t. an y (3.12)

;t =Ax +B80v7*+ W,.ietis

1=i(A -&.C+B6,)7.f+i'A,(Cx+ w2) QI=Q+O, P1I.P+P, (3.13)

where A,4 4QCTVi Iand 6, ~R 2BTP. Although the implemented Qi,-arr,P2= .. PGr, (3.14)
compensator has the state x, E Ale, it can be viewed as a quasi-full-order Q, ror r, P, GAG r. (3.15)compensator whose geometric structure is entirely dictated by the
projection 7. Sensor inputs Ay are annihilated unless they are contained Now substitute (2.11), (2.12), and (3. 13)-(3. 15) into (3.6)-(3. 11) and use
i n [M t7r)]1 .L= (H (7 7). where M~ and (11 denote null space and range. the relations
Furthermore, the quasi.-full-order state estimate rfr employed in the
control input is contained in 6(-r). Thus, (1() and (R(r7) are the control B~C ='Q2, BC,= - -PG r,

and observation subspaces of the compensator. r=v TrQrQr T CTR2 C,= Gp~PT

Hl. ROO OFTHE AINTHEREMThen (2.10) follows from (3.8)-r'(3.7). Substituting (2.10) into (3.7),
The proof given here considerably simplifies the original derivation (3.8), (3.10), and (3.11) shows that ((3.7)G)T and -(3.10)! are

given in (231 and [24]. Using the fact that (t. is open, the Fritz John precisely (2.15S) and (2 16). Since Gr(3.8)G = (2.lS)rand I'T(3.lI)r =Iversion of the Lagrange multiplier theorem can be used to rigorously 7(2.16), (3.8) and (3.11) can be omitted. Finally, using (3.12) it follows
derive the first-order necessary conditions ([7]. see also [25]) that (2.13) = (3.6) + (2.15)-r - (2 .1 5 )-( 2 .15 )1 and similarly for

(2.14).
0=,4+0Ar 17,(3.1)3 O...Ar+PA+, (3.2) IV. DIRECTIONS FOR FURTHER RESEARCH

0=P,1Q12 + PQ2 (3.3) With regard to the existence of a stabilizing compensator. known
results (e.g., 1281-[34)) can be exploited to a great extent. A numerical

2 (P 'Q 1 2 CV 2.  (3.4) algorithm for solving the optimal projection equations has been developed
C, I-B (P, Q1,Q;' + P1) (3.5) in [24] and 1351. The proposed computational scheme is philosophically

qiedfeetfrom gradient search algorithms 12].13), 16),1[7).19]. 1111.
where 136], 1371 in that it operates through dir' ct solution of the optimal

projection equations by iterative refinement of the optimal projection.
94 [V 0 1Methods for eliminating local extrema are being investigated by applying

TR z component cost analysis 117). Generalizations of the optimal projection
an n n) x (n + n,.) 40, P are partitioned into n x ft. n x n,, and order dynamic-compensation problem.

n,~ X n, subblocks as I) Discrete-Time System/Discrete- Time Compensator: Digital im-
~1 F 1 plementation can be modeled by a discrete-time compensator with control

_ QT ~ J ' ~ of a continuous-time system facilitated by sampling and reconstruction
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2) Cross H'eighting/Correlai'ed Disturbance and Observation (211 S. L. Camphell and C. D. Meyer. Jr., Generalized Inverses of Linear
Noise: This extension is straighforward and entirely analogous to the Transformations. London. Pitman. 1979.I

LQGcas (sc. ~g. (3 p.351).1221 J. Medauuc. -On sabilization and optimizatin by output feedback,- in Phoc.LQG ase sm. ~g.,13. . 351).121h Annual Asilomar Conf Circuits and Syst.. 1979. pp. 412-4163) Singular Observation Noise/Singular Con trol Weighting: With 1231 D. C. Hyland. "Optimalliy condiions for fixed-order dynamic compensation of
due attention to (2.7), direct output feedback can be used in the singular flexible spacecraft with uncertain parameters." in Proc. AIAA 20th Aerospac-e
ease. The nature of the problem forebodes all of the difficulties associated Sciences Meet.. Orlando, FL. Jan. 1982, paper 82-0312.I

1241 D. C Hyland. "The optimal projection approach So fixed-order compensation:with the singular LQG problem. Note that the output feedback problem Numerica miethiods arid illustive resul. " in AIAA 21st Aerospace Sciences
(221, [381. when viewed in this context, is highly singular. Meet.. Reno, NV. Jan. 1983, paper 03-0303.

4) Infinite-Dimensional Systems: The optimal projection equations 1251 D. C. Hyland anid D. S. Bernstein. 'Explicit optimality conditions for fixed-order
have been extended in [391 and 1401 to the case in which (2.1) is a dynamic comp ensaton." in Proc. 22nd IEEE Conf. Decision Cont, SanI
distributed parameter system, for example, a partial or functional 126) A. Albert. "Conditions for positive and nionnegative definiteness in terms of
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UTHE OPTIMAL PROJECTION EQUATIONS FOR FINITE-DIMENSIONAL
FIXED-ORDER DYNAMIC COMPENSATION OF

INFINITE-DIMENSIONAL SYSTEMS*

DENNIS S. BERNSTEINt AND DAVID C. HYLANDt

Abstract. One of the major difficulties in designing implementable finite-dimensional controllers for
distributed parameter systems is that such systems are inherently infinite dimensional while controller
dimension is severely constrained by on-line computing capability. While some approaches to this problem
initially seek a correspondingly infinite-dimensional control law whose finite-dimensional approximation
may be of impractically high order, the usual engineering approach involves first approximating the
distributed parameter system with a high-order discretized model followed by design of a relatively low-order
dynamic controller. Among the numerous approaches suggested for the latter step are model/controller
reduction techniques used in conjunction with the standard LQG result. An alternative approach, developed
in (36], relies upon the discovery in [31] that the necessary conditions for optimal fixed-order dynamic
compensation can be transformed into a set of equations possessing remarkable structural coherence. The
present paper generalizes this result to apply directly to the distributed parameter system itself. In contrast
to the pair of operator Riccati equations for the *full-order" LQOG case, the optimal finite-dimensional
fixed-order dynamic compensator is characterized by four operator equations (two modified Riccati equations
and two modified Lyapunov equations) coupled by an oblique projection whose rank is precisely equal to
the order of the compensator and which determines the optimal compensator gains. This "'optimal projection"
is obtained by a full-rank factorization of the product of the finite-rank nonnegative-definite Hilbert-space

operators which satisfy the pair of modified Lyapunov equations. The coupling represents a graphic portrayal
of the demise of the classical separation principle for the finite-dimensional reduced-order controller case.
The results obtained apply to a semigroup formulation in Hilbert space and thus are applicable to control
problems involving a broad range of specific partial and functional differential equations.

Key words. optimality conditions, finite-dimensional fixed-order dynamic compensator, infinite-
dimensional system, distributed parameter system, semisimple operator, oblique projection, Drazin general-
ized inverse

I1. Introduction. One of the major difficulties in designing active controllers for
distributed parameter systems is that such systems are inherently infinite dimensional
while implementable controllers are necessarily finite dimensional with controller
dimension severely constrained by on-line computing capability. As pointed out by
Balas ([I], see also [2]), control design for distributed parameter systems entails the
practical constraints of 1) finitely many sensors and actuators, 2) a finite-dimensional
controller and 3) natural system dissipation. The validity of 2) is apparent from the
fact that processing and transmitting electrical signals by conventional analog or digital
components constitutes finite-dimensional action. Although distributed parameter
devices can also be utilized, their fabrication and implementation can incorporate at
most a finite number of design specifications.' Hence, although distributed parameter
systems are most accurately represented by infinite-dimensional models, real-world

* Received by the editors December 6, 1983, and in revised form September 15, 1984. This work was
performed at Lincoln Laboratory/MIT and was sponsored by the Department of the Air Force.

t Harris Corporation, Government Aerospace Systems Division, Controls Analysis and Synthesis Group,
Melbourne, Florida 32901.

'Examples of such components include tapped delay lines and surface acoustic wave devices. Although
scoustoelectric convolvers (3, p. 465] can perform continuous-time integration, synthesis of the desired
impulse-response kernel can incorporate only finitely many specified parameters. The obvious fact should
also be noted that physical limitations impose an upper bound on the number of design parameters that
can be incorporated in the construction of any device. For an extensive treatment of this subject, see [72].
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OPTIMAL PROJECTION EQUATIONS 123 1
constraints require that implementable controllers be modelled as lumped parameter
systems. I

Clearly, the above observations effectively preclude the possibility of realizing
infinite-dimensional controllers that involve full-state feedback or full-state estimation
(see, e.g., [4]-[6] and the numerous references therein). Although finite-dimensional
approximation schemes have been applied to optimal infinite-dimensional control laws
([7]-[9]), these results only guarantee optimality in the limit, i.e., as the order of the
approximating controller increases without bound. Hence, there is no guarantee that
a particular approximate (i.e., discretized) controller is actually optimal over the class n
of approximate controllers of a given order dictated by implementation constraints.
Moreover, even if an optimal approximate finite-dimensional controller could be
obtained, it would almost certainly be suboptimal in the class of all controllers of the
given order.

Although the usual engineering approach to this problem is to replace the dis-
tributed parameter system with a high-order finite-dimensional model, analogous,
fundamental difficulties remain since application of LQG leads to a controller whose i
order is identical to that of the high-order approximate model. Attempts to remedy

this problem usually rely upon some method of open-loop model reduction or closed-
loop controller reduction (see, e.g., [10]-[15]). Most of these techniques (with the
exception of [ 11]) are ad hoc in nature, however, and hence guarantees of optimality
and stability may be lacking.

A more direct approach that avoids both model and controller reduction is to fix
the controller structure and optimize the performance criterion with respect to the I
controller parameters. Although much effort was devoted to this approach (see, e.g.,
[16]-[30]), progress in this direction was impeded by the extreme complexity of the
nonlinear matrix equations arising from the first-order necessary conditions. What was I
lacking, to quote the insightful remarks of [24), was a "deeper understanding of the
structural coherence of these equations." The key to unlocking these unwieldy equations
was subsequently discovered by Hyland in [31 ] and developed in [32]-[36]. Specifically,
it was found that these equations harbored the definition of an oblique projection (i.e.,
idempotent matrix) which is a consequence of optimality and not the result of an ad
hoc assumption. By exploiting the presence of this "optimal projection," the originally
very complex stationary conditions can be transformed without loss of generality into I
much simpler and more tractable forms. The resulting equations (see [36, (2.10)-(2.17)])
preserve the simple form of LQG relations for the gains in terms of covariance and
cost matrices which, in turn, are determined by a coupled system of two modified
Riccati equations and two modified Lyapunov equations. This coupling, by means of
the optimal projection, represents a graphic portrayal of the demise of the classical
separation principle for the reduced-order controller case. When, as a special case,
the order of the compensator is required to be equal to the order of the plant, the $
modified Riccati equations immediately reduce to the standard LQG Riccati equations

and the modified Lyapunov equations express the proviso that the compensator be
minimal, i.e., controllable and observable. Since the LQG Riccati equations as such
are nothing more than the necessary conditions for full-order compensation, the
"optimal projection equations" appear to provide a clear and simple generalization
of standard LQG theory.

The fact that the optimal projection equations consist of four coupled matrix
equations, i.e., two modified Riccati equations and two modified Lyapunov equations,
can readily be explained by the following simple reason. Reduced-order control-design
methods often involve either LQG applied to a reduced-order model or model reduction I

U
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124 D. S. BERNSTEIN AND D. C. HYLAND

applied to a full-order LQG design, and hence both approaches require the solution
of precisely four equations: two Riccati equations (for LQG) plus two Lyapunov
equations (for system reduction via balancing, as in [12], [14]). The coupled form of
the optimal projection equations is thus a strong reminder that the LQG and order-
reduction operations cannot be iterated but must, in a precise sense, be performed
simultaneously. This situation is partly due to the fact that the optimal projection matrix

may not be of the form [o' o] even in the basis corresponding to the "balanced"
realization [12], (14]. This point is explored in [37], (37a] where the solution to the
optimal model-reduction problem is characterized by a pair of modified Lyapunov
equations which are also coupled by an oblique projection.

Returning now to the distributed parameter problem, it should be mentioned that
notable exceptions to the previously mentioned work on distributed parameter control-
lers are the contributions of Johnson [38] and Pearson [39], [40] who suggest fixing
the order of the finite-dimensional compensator while retaining the distributed para-
meter model. Progress in this direction, however, was impeded not only by the
intractability of the optimality conditions that were available for the finite-dimensional
problem (as in (16]-[30]), but also by the lack of a suitable generalization of these
conditions to the infinite-dimensional case. The purpose of the present paper is to
make significant progress in filling these gaps, i.e., by deriving explicit optimality
conditions which directly characterize the optimal finite-dimensional fixed-order
dynamic compensator for an infinite-dimensional system and which are exactly
analogous to the highly simplified optimal projection equations obtained in [31]-[34],
[36] for the finite-dimensional case. Specifically, instead of a system for four matrix
equations we obtain a system of four operator equations whose solutions characterize
the optimal finite-dimensional fixed-order dynamic compensator. Moreover, the
optimal projection now becomes a bounded idempotent Hilbert-space operator whose
rank is precisely equal to the order of the compensator.

The mathematical setting we use is standard: a linear time-invariant differential
system in Hilbert space with additive white noise, finitely many controls and finitely
many noisy measurements (thus satisfying the first practical constraint mentioned
above). The input and output maps are assumed to be bounded. Since the only explicit
assumption on the unbounded dynamics operator is that it generate a strongly con-
tinuous semigroup, the results are potentially applicable to a broad range of specific
partial and functional differential equations. The actual applicability of our results is
essentially limited by practical constraint 3). Since we are concerned with the steady-
state problem, we implicitly assume that the distributed parameter system is stabilizable,
i.e., that there exists a dynamic compensator of a given order such that the closed-loop
system is uniformly stable. We note that stabilizing compensators do exist for the wide
class of problems considered in [41] and [42] which includes delay, parabolic and
damped hyperbolic systems. The question of how much damping is required for
stabilizability of hyperbolic systems is a crucial issue in designing controllers for large
flexible space structures [7], [43]-[49a].

It is important to point out that the results of this paper can immediately be
specialized to finite-dimensional systems by requiring that the Hilbert space characteriz-

ing the dynamical system be finite-dimensional. Then all unboundedness considerations
can be ignored, adjoints can be interpreted as transposes and other obvious sim-
plifications can be invoked. The only mathematical aspect requiring attention is the
treatment of white noise which, for general handling of the infinite-dimensional case,
is interpreted according to [6].2 For the finite-dimensional case, however, the standard

I
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classical notions suffice and the results go through with virtually no modifications.
The contents of the paper are as follows. Section 2 contains preliminary notation

in addition to particular results for use later in the paper. Section 3 presents the optimal
steady-state finite-dimensional fixed-order dynamic-compensation problem and the
Main Theorem gives the necessary conditions in the form of the optimal projection I
equations (3.15)-(3.18). We then develop a series of results which serve to elucidate
several aspects of the Main Theorem. Section 4 is devoted to the proof of the Main
Theorem. The reader is alerted to the two crucial steps required. The first step involves
generalizing to the infinite-dimensional case the derivation of the necessary conditions
in their "primitive" form (see (4.27)-(4.29) and (4.48)-(4.53)). The derivation in
[31]-[33], [36] involving Lagrange multipliers is invalid in the infinite-dimensional
case due to the presence of the unbounded system-dynamics operator. Instead, we use U
the gramian form of the closed-loop covariance operator to obtain a dual problem
formulation and then proceed to derive the primitive necessary conditions by means
of a lengthy, but direct, computation (Lemma 4.7). The second crucial step involves
transforming the primitive form of the necessary conditions to the final form given in
the Main Theorem. This laborious computation was first carried out in [31), (32] and
was subsequently facilitated in [33], [36] by means of a judicious change of variables
(see (4.32), (4.33)). Finally, some concluding remarks are given in § 5. U

2. Preliminaries. In this section we introduce general notation along with basic
definitions and results for use in later sections. Our principal references are [6], [50]
and [51].

ThrQughout this section let , W and r" denote real separable Hilbert spaces
with norm 11 bl and inner product (-, .) and let 9(Y, X") denote the space of bounded
linear operators from X into N'. For Le M (Y', W), 1IL11 is the norm of , A (L) is the I
range of , h(L) is the null space of L, p(L) is the rank of L (set p(L)=co if L does
not have finite rank), L-' is the inverse of L when L is invertible, i.e., when L has a
bounded inverse, L* is the adjoint of L and L-*A (L*)-'. Recall that IL1 = I L*II and
that p(L) = p(L*) [50, p. 161]. Now suppose that Y- " so that Le M(et") e(y, Ye). I
If LL* = L*L then L is normal and if L- L* then L is selfadjoint. If L is selfadjoint
and (.x, x) l 0, xe Jr then L is noi?4egative definite. Note that the selfadjointness
assumption is included in the definitio- since the Hilbert spaces are assumed real. If i
L is nonnegative definite then L" 2 denotes the (unique) nonnegative-definite square
root of L. Call L semisimple (resp., real semisimple, nonnegative semisimple) if there
exists invertible SE 9(ge) such that SLS - ' is normal (resp., selfadjoint, nonnegative
definite). This implies that SLS - 1 has a complete set of orthonormal eigenvectors and,
in the real-semisimple or nonnegative-semisimple cases, has real or nonnegative eigen-
values.

Recall that if Le R(Ye) is compact then L has at most a countable number of
eigenvalues and all nonzero eigenvalues have finite multiplicity. Hence, for L 6
.(Y, ") compact, let {a,) be the (at most countable) sequence of eigenvalues of
(LL*)"1 2 with appropriate multiplicity and a,?-a 2 g" >0 [50, p. 261]. Then
90(, ') denotes the set of trace class (or nuclear) operators, i.e., the set of compact

2 Alternatively, we could have adopted the white noise formulation of[41. The main difference between i
the two white noise formalisms is that Balakrishnan works with finitely additive rather than countably
additive measures. Strictly speaking, then, even in finite dimensions Balakrishnan's white noise is different
from the standard notion (see [6, pp. 307, 315]). 3
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LeW(, X") for which F., aj<00 [50, p. 521]. M,(g, Rt") is a Banach space with norm
11 L1, AE I,,,.It

If a" 'i< 0 then LE 92(, W), the set of Hbert-Schmidt operators, which is a

Banach space with norm

3 ULIh2 ~,ILI12

Note that IILII -ILI < 11IL11,, ULII = IL*II, 1 L, = IIL*1h and JILI12 = IIL*II,. If W= g',
then we write 6(e) and M() for 91(g, W) and R%(Wr, ), respectively. Note that
if nonnegative.definite Le V I (W) then L' / 2 E gy ().

If L r=R, Pe, ') and Sc 6(W', i"') then

i SLi1 1 11 I1L11,

and hence SL e R,(X, a'). Similarly, under suitable hypotheses,

and 
I Slh IS11 JIL1 h,

JISLIJh 9 JISIl,2I LI1,.

LEMMA 2.1. Suppose Le 0,(Y) and let {A} denote the nonzero eigenvalues of L
with appropriate multiplicity. Then [51, p. 89]

If L is selfadjoint then [50, p. 522]

If L is nonnegative definite then

Let Le E (X). Then define [50, p. 523] the trace functional tr: R,(g) R by

i tr L (Lp, 46,),

where the summation is independent of the choice of orthonormal basis {0}. The trace
satisfies tr L = tr V, tr SL = trLS for all S e (Ye), tr ST = tr TS for all S, T E 6(X)

and tr (aT+ PS) = a(tr T)+ P(tr S) for all a, P eR and S, Te M,(N).
LEMMA 2.2. Suppose Le 91(W) and let {A} denote the nonzero eigenvalues of L

with appropriate multiplicity. Then [51, p. 139]

tr L = A

and hence (by Lemma 2.1)

If L is nonnegative definite then

~~tr L = I hl.

I
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COROLLARY 2.1. For each S E 0(X) the linear functionals IL- tr SL: a, (W)- R,

L- tr LS: Q,(&) - R I
are continuous. For each L E R, (Ye) the linear functionals

S--'trLS: 9(k) - R,

are continuous.
Although showing that a bounded linear operator is trace class is slightly more

involved than the above characterizations of 91(k), the following result will suffice
for our purposes (see [52, p. 96], or [52a, p. 1711). I

LEMMA 2.3. Let LE ,(X) be nonnegative definite. Then

iI
whether finite or infinite, is independent of the orthonormal basis {0}. The summation is
finite if and only if Le ra(Ye).

Many of the operators introduced in the following section have finite-dimensional I
domain or range space and hence are degenerate, i.e., have finite rank. Recall that
degenerate operators are necessarily trace class. The following result, which generalizes
[53, Thin. 2.1, p. 240] in certain respects, will be fundamental in decomposing finite-rank
operators.

LEMMA 2.4. Suppose LI," • - , L, e B(Y, X") have finite rank. Then there exists a
finite-dimensional subspace .X a Y such that LAE" = 0, i 1, • - •, r. Furthermore, if
X = X then *C can be chosen such that LA ca A, i = 1, • , r.

Proof. It suffices to consider the case r= 1. Writing L for L, note that since
p(L*) <oo, .(L)'= R (L*) [50, p. 155] and .N'(L) is closed, the first statement holds
with A=X=.(L)'. When *'=X" set .=./((L) + (L) and note that A'=
.(L) nR(L)1 csf(L) and "c9?(L)c A. 0

The following generalization of Sylvester's inequality [54, p. 66] will be used
repeatedly in handling finite-rank operators.

LEMMA 2.5. Let Le a(X, W') and Sc e(Y', X "). Then
(2.0) p(SL) -rain f{p(S), p(L)}.

If dim X' = v < oc, then 5
(2.2) p(S) + p( L) - j, 9 p(SL).

Proof If either S or L does not have finite rank then (2.1) is immediate. If both
S and L have finite rank then the standard arguments [54] used to prove the finite-

dimensional version of (2.1) remain valid. To prove (2.2), note that Lemma 2.4 implies
that there exist orthonormal bases for X and X" with respect to which L has the matrix
representation [L 0], where Le R "P. Similarly, there exist orthonormal bases for Y' I
and X" with respect to which S has the matrix representation [s], where ScR".
Since the two cited bases for W may be different, let orthogonal U eR .. be the matrix
representation (with respect to either basis for X") for the change in orthonormal basis
[6, p. 100]. Hence SL has the matrix representation [jo" 0] and (2.2) follows from
the known result [54, p. 66]. 0

As in the proof of Lemma 2.5, we shall utilize the infinite-matrix representation
of an operator with respect to an orthonormal basis. All matrix representations given

I
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here will consist of real entries since the Hilbert spaces involved are real. When the
orthonormal bases are specified and no confusion can arise, we shall not differentiate
between an operator and its matrix representation. We shall use the infinite identity
matrix I. interchangeably with the identity Isr on Y.

When dealing with finite-dimensional Euclidean spaces the notation and ter-
minology introduced above will be utilized with only minor changes. For example,

bounded linear operators will be represented by matrices whose elements are deter-
mined according to fixed orthonormal bases and hence we identify R""" = 9(R", R').
Note that if Le e(R", g) and Se e(YR") then SL is an m ×n matrix which is
independent of any particular orthonormal basis for Y. The transposes of x E R " 
and Me R"x are denoted by xT and MT and M - T A (MT )- '. Let 1, denote the n x n
identity matrix.

To specialize some of the above operator terminology to matrices, let M 6 R" x".
We shall say M is nonnegative (resp., positive) diagonal if M is diagonal with
nonnegative (resp., positive) diagonal elements. M is nonnegative (resp., positive)
definite if M is symmetric and xTMx 9 0 (resp., xTMx >0), xE R'. Recall that M is
symmetric (resp., nonnegative definite, positive definite) if and only if there exists
orthogonal U e R"'" such that UMU T is diagonal (resp., nonnegative diagonal, positive
diagonal). M'is semisimple [55, p. 13], or nondefective [56, p. 375], if M has n linearly
independent eigenvectors, i.e., M has a diagonal Jordan canonical form over the

complex field. M is real (resp., nonnegative, positive) semisimple if M is semisimple
with real (resp., nonnegative, positive) eigenvalues. Note that M is real (resp., nonnega-
tive, positive) semisimple if and only if there exists invertible Se R"' " such that SMS - '
is diagonal (resp., nonnegative diagonal, positive diagonal). Alternatively, M is real
(resp., nonnegative, positive) semisimple if and only if there exists invertible S e R"'"I such that SMS - ' is symmetric (resp., nonnegative definite, positive definite).

LEMMA 2.6. The product of two nonnegative- (resp., positive-) definite matrices is
nonnegative (resp., positive) semisimple.

Proof If S LER.XN are both nonnegative (resp., positive) definite then by [55,
Thin. 6.2.5, p. 123] there exists invertible 4 ER" 'X such that DsAO-ISO - T and
DLAhOrLO are nonnegative (resp., positive) diagonal. Hence, SL=0DsDL46- ' is

nonnegative (resp., positive) semisimple, as desired. Alternatively, if either S or L is
positive definite, then the result follows from SL = L- " 2 (L' 2SL1/2 )L"/ 2 if L is positive
definite or SL-- S1/2(S1/2LS1/2)S

-
1

/ 2 if S is positive definite. 03

3. Problem statement and the Main Theorem. We consider the following steady-
state fixed-order dynamic-compensation problem. Given the dynamical system on
[0, Co)

5 (3.1) 1(t) = Ax(t) +Bu(t) +H, w(t),

(3.2) y(t) = Cx(t)+ H 2w(t),

3 design a finite-dimensional fixed-order dynamic compensator

(3.3) xt(t) - A~x(t)+ By(t),

3 (3.4) u(t) = Cx (t)

which minimizes the steady-state performance criterion

(3.5) J(A B., C-) A lim E[(IRx(t), x(t))+ u(t)TR2u(0)I

I
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The following data are assumed. The state x(t) is an element of a real separable

Hilbert space W and the state differential equation is interpreted in the weak sense
(see, e.g., [6, pp. 229, 317]). The closed, densely defined operator A: a (A)c a*-+ Y

generates a strongly continuous semigroup eA', tO. The control u(t)ER', Be
90(R', Y) and the operator R e 0(X) and the matrix R2 ER" X- are nonnegative I
definite and positive definite, respectively. w(.) is a zero-mean Gaussian "standard
white noise process" in L2((O, 00), Y') (see [6, p. 314]), where N" is a real separable
Hilbert space, H, e M2(X, X), H2 e _1(W', R') and "E" denotes expectation. We assume
that HH* = 0, i.e., the disturbance and measurement noises are independent,3 and I
that V2 A H2H* eR' is positive definite, i.e., all measurements are noisy. Note that
V, A HH* I %(Ye) is nonnegative definite and trace class.' The initial state x(O) is
Gaussian and independent of w(.). The observation y(t)eR' and Ce (k, R'). The I
dimension of the compensator state x,(t) is of fixed, finite order n, dim Ye and the
optimization is performed over A, c R - 'x , , Be R "x and C, e R .

To handle the closed-loop system (3.1)-(3.4), we introduce the augmented state
space itA X R', which is a real separable Hilbert space with inner product (i,, i2 )A I
(xt,x 2)+xrx12, RiA(xxj). An operator LeSI(W) has a "decomposition" into
operators LIE M(X), L1 2 E 0(R%,, X), L2je 0(YeR") and L2eR ' , '", in the sense that

~I
for i A(x, x)e U L= (Ljx + L 2x, L21x+ L2x,), or, in "block" form,

For later use note that L 2 LI]I

and 1L 1 -1I,1 + 11 L,211 + 15L + 11 L2211

L* [

We can similarly construct unbounded operators in . Hence, define the closed-
loop dynamics operator A: e(A)c a'-- * on the dense domain 9(A)A A (A) XR"',
by Ai = (Ax + BCx,, BcCx + Acx,). Since A can be represented by

.4 [ A BC rA 0][o0 BCc1
BC AJ=O 0+ BeC AJ

and since the closed-loop operator I

generates the strongly continuous semigroup

it follows from [50, Thim., p. 497] that A is also closed and generates a strongly
continuous semigroup e ' M (*), t : 0. To guarantee that J is finite and independent I

3This assumption and its analogue, the lack of a cros-weighting term x(t)rR 2u(,) in (3.5), are for

convenience only. See 15.

' We must require that R and V, be nuclear since covariance operators in the white noise rormulation
of [6] are not necessarily trace class as they are in the formulation of [4].

I
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of initial conditions we restrict our attention to the set of admissible stabilizing
compensators

sl A{(A, B. C,): e*A' is exponentially stable).

3Hence if (A Bo, C,) E 0 then there exist a > 0 and P > 0 such that

(3.6) Ile '1ra e- 0', 1o.
Since the value of J is independent of the internal realization of the compensator, we
can further restrict our attention to

if+ A{(A, Bc, C,)E .4: (A, Bc) is controllable and (C, A,) is observable}.

The following lemma is required for the statement of the Main Theorem.
LEMMA 3.1. Suppose 4Q, Pc (W) have finite rank and are nonnegative definite.

Then QP is nonnegative semisimple. Furthermore, if p( QP) = n, then there exist G,3 IrE M(X, R",) and positive-semisimple M e R',x", such that

(3.7) 0^ = G*Mr,

(3.8) 7Gor* =..

Proof. By Lemma 2.4 there exists a finite-dimensional subspace .X( - W such that
QA c ., QA(' = 0, PAN - A and P.R' = 0. Hence there exists an orthonormal basis1 for X with respect to which t and P have the infinite-matrix representations

0I P.= , 1
where Q1h P1 a R'- t are nonnegative definite and r-,dim . Since by Lemma 2.6 there
exists invertible T e R" " such that A1 = ' ,I-1 P3'J' is nonnegative diagonal, we have

which shows that 0 P is nonnegative semisimple. If, furthermore, p(Q P) = n, then it
is clear that * can be chosen (i.e., modified by an orthogonal matrix) so thatU 0_10 0

3 where A e R'' ", is positive diagonal. Hence,

N =L~; f[['O"]A[[II O. 0] 0~~~ i
which shows that (3.7) and (3.8) are satisfied with

for all invertible S e R"'- '". 0
We shall refer to G, rE R(Y, R", ) and positive-semisimple Me R",'", satisfying

(3.7) and (3.8) as a (G, M, r)-factorization of QP. For convenience in stating the Main

Theorem define

A X BR 2 1B*, LCO V2 C.

I
I
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MAIN THEOREM. Suppose (A. B,, C,) E 51. solves the steady-state fixed-order

dynamic-compensation problem. Then there exist nonnegative-definite Q, P, , P ( 9a,) 
such that A Bc and C, are given by

(3.9) Ac = r(A - Q1- 3P)G*,
(3.10) Bc = FQC* V2-,
(3.11) cc = -R 2- B* PG* ,

for some (G, M, F)-factorization of QP, and such that, with r-A G'F, the following I
conditions are satisfied:

(3.12a, b) Q: _q (A*)-.?(A), P: 2 (A).--t,(A*), 3
(3.13a, b) 4 : X- 9(A), i$: X- 2WA),

(3.14a, b, c)' p(6) = p(P) = p(56) = nl

(3.15) 0= (A - rQ.)Q + Q(A - rQY.) * + V, + rQTQ Qr*,

(3.16) 0 = (A -X.Pr)*P + P(A - .Pr) + R, + r* P.P,

(3.17) 0 = [(A -IP) d + 0(A - YP)* + Q:.Q]-*,

(3.18) 0 = [(A - QE)* P + P(A - Q!) + P.. P].

The content of the Main Theorem is clearly a set of necessary conditions which I
characterize the optimal steady-state fixed-order dynamic compensator when it exists.
These necessary conditions consist of a system of four operator equations including
a pair of modified Riccati equations (3.15) and (3.16) and a pair of modified Lyapunov I
equations (3.17) and (3.18). The salient feature of these four equations is the coupling
by the operator iE a(K) which, because of (3.8), is idempotent, i.e., r'= ,r. In general,
,r is an oblique projection and not an orthogonal projection since there is no requirement
that 7 be selfadjoint. Additional features of the Main Theorem will be discussed in 1
the remainder of this section. For convenience, let G, M, 1, 7, Q, P, Q and P be as
given by the Main Theorem and define A A diag (A,.., A,,), where A-A 2

. .

A,., > 0 are the eigenvalues of M. I
We begin by noting that if x, is replaced by Sx , where SER"," is invertible,

then an "equivalent" compensator is obtained with (A, B, C,) replaced by
(SAS - ', SB, C S-).

PROPOSITION 3.1. Let (A. B. C,)E d+. If SeR"'", is invertible then
(SAS-, SB. C,.S-) c s+ and

(3.19) J(A, B,, C) = J(SAS-', SB, CS-').

Proof Although the result is obvious from system-theoretic arguments, we shall
prove it analytically by utilizing elements of the development in § 4. Define

1"c~ 0 ]E

and note that replacing (A. B , C) by (SAS - ', SB, C-.') is equivalent to replacing
,A, V and A by - fV and S-*A-, respectively. If a, # > 0 satisfy (3.6) then
a straightforward application of the Hille-Yosida theorem [57, pp. 153-5] shows that

'(3.14s) refers to p(4) -n , etc. I

I
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the strongly continuous semigroup generated by S' S-' satisfies tie$''1_"
ii s s' -a e 9 , which proves the first assertion. Since S eA'S - 

, 0, is also a strongly
continuous semigroup with generator S it follows that S • S = e . Hence

I J e -(SS'*) e(')I- ' dt-: S
dOt

and (3.19) follows from tr QA = tr ( (*)( -. A-I) 0
In view of Proposition 3.1 one would expect the Main Theorem to apply also to

(SACS - ', SB,, C-'). Indeed, it may be noted that no claim was made as to the
uniqueness of the (G, M, F)-factorization of QP used to determine A, B, and C in
(3.9)-(3.11). These observations are reconciled by the following result which shows
that a transformation of the compensator state basis corresponds to the alternative
factorization QP = (S- G)T (SMS-')(SF) and, moreover, that all (G, M, F)-factoriz-
ations of P are related by a nonsingular transformation. Note that -" remains invariant
over the class of factorizations.

PROPOSITION 3.2. IfS e R",' is invertible then , A S- r A SF and A - SMS-
satisfy

(3.7)'

(3.8)' = I..3 Conversely, if , re a(, R ) and invertible M? r R "'"' satisfy (3.7)' and (3.8)', then
there exists invertible S Rnm " such that 5 = S-TG, r = Sr and M = SMS-'.

Proof. The first part of the proposition is immediate. The second part follows by
taking SAm- rG*M- 1, noting S-l=MrG*I - ' and using the identities
tG*MFr*=lM and Mr*= I'G*A. 0

The next result shows that there exists a similarity transformation which simul-
taneously diagonalizes QP and 7.

PROPOSITION 3.3. There exists invertible 4) E ( ) such that

(3.20a, b) = - ]4*, . = *Ap 0 ,

(3.21 a, b) Q'@' A  00D' r =@-[ 0'0 (',

i where Ad, A6e Rn",X " are positive diagonal and AdAp = A. Consequently,

(3.22a, b) = 4, P = xr-.

Proof Proceeding as in the proof of Lemma 3.1, choose an orthonormal basis for
X with respect to which

*= 0] and .6=[P' 0],
0 0 [ 0  0 0

where Q,, PIERR" ' are nonnegative definite. By [55, Thin. 6.2.5, p. 123], there exists
invertible teR " ' such that .OA&P(,V and A =-IT-I are nonnegative
diagonal. Because of (3.14), it is clear that W can be chosen so that

* A=[A0 0] and X=o A ],
I

U
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where A0 , Ape R",'"-are positive diagonal. Thus (3.20) holds with 3

From (3.20) it follows that i

0,= -IAA 0]0cZ0

Now define 03 =[1., 010*, R =AoAp and r =[I,. 0]4) so that (3.7)' and (3.8)' are
satisfied. By the second part of Proposition 3.2 there exists invertible Se R", '", such
that 0 = S T 0, M = S-MS and r = S-r. Since M and R have the same eigenvalues,
M = A (modulo an ordering of the diagonal elements) and thus (3.21a) holds. Finally, U
(3.21b) follows from

T=G~rG*4 1, 0]4).0

Remark 3.1. Proposition 3.3 shows that A,," • •, A, are the positive eigenvalues
of 'P.

Remark 3.2. The simultaneous diagonalization in (3.20) has been effected by a
contragredient transformation [55], [58]. For applications of this type of transformation
to model reduction and realization problems see [12], [59]-[61]. Simultaneous
diagonalization of operators is discussed in [53, p. 181]. I

The following result validates the precise handling of the unbounded operator A
in (3.9), (3.17) and (3.18).

PROPOSITION 3.4. The following relations hold: 5
(3.23a, b, c) p(G) = p(r) = p(r) =no

(3.24a, b) r: X - S(A), 7* : 4(A*),

(3.25a, b) G*:R"- 2(A), r* :R", -!@(A*).

Proof From (3.8) and (2.1) it follows that nc = p(rG*) g min {p(r), p(G*)}. Since
p(]F) - n_ p(G)=p(G*) and p(G) < n,, (3.23a) and (3.23b) hold. To show (3.23c) I
either note (3.21b) or use (3.14a) and (3.22) to obtain

nT = p(Q)p(TQ)()p(.")--p(G*r) p(r)= nc. i

To prove (3.24a) note that (3.22a) implies R(4)c a(-r) and thus p( ) = p(r) implies
R(Q) = *(r), and similarly for (3.24b). Finally, (3.25) follows from (3.23), (3.24), the
definition 7 = G*F and the fact that r* = r* G. 0

Since the domain of A may not be all of X, expressions involving A require special
interpretation. First note that because of the range condition (3.25a), the expression
(3.9) indeed represents an n, x nc matrix (see, e.g., [6, p. 80]). Similarly, because ofTI(3.25b), AC is given by

(3.26) A . G(A* - .Q- )r*.

With regard to (3.15), note that because of (3.12a), the right-hand side of (3.15) is a
linear operator with domain 9(A*). Since e A -,rQ. -Q:EQr* + V +,QQr* isi
continuous on W(A*), AQ+ QA* has a continuous extension on X given precisely by
-0. Similar remarks apply to (3.16). Analogous domain conditions were obtained in
[5] for a deterministic infinite-dimensional linear-quadratic control problem with

I
I
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full-state feedback. Finally, because of (3.24) the right-hand sides of (3.17) and (3.18)
denote bounded linear operators on all of o.

It is useful to present an alternative form of the optimal projection equations
(3.15)-(3.18). For convenience define the notation

PROPOSITION 3.5. Equations (3.15)-(3.18) are equivalent, respectively, to

(3.27) 0 = AQ+ QA*+ V, - Q!Q+ i Q.Qr*,

(3.28) 0 = A*P+ PA + R, - PIP + r* PYP'r,

(3.29) O=(A-.P) +4 (A-IP)*+Q!Q-%Q1QT'*

(3.30) 0 = (A - Ql).P +P (A - QT)+ P.P - P.Pr,.

Proof The equivalence of (3.27) and (3.28) to (3.15) and (3.16) is immediate.
Using (3.22a) in the form Q = Q7*, we obtain (3.17)= (3.29)-r*. Conversely, from
(3.22a) and [(A -P)Q]* = Q(A -P)* (see, e.g., [6, p. 80]) it follows that (3.29) =

(3.17)+(3.17)*-T(3.17). Similarly, (3.18) and (3.30) are equivalent. 0
The form of the optimal projection equations (3.27)-(3.30) helps demonstrate the

relationship between the Main Theorem and the classical LQG result when dim X = n <
oo. In this case we need only note that the (G, M, I)-factorization of 4OIP in the
"full-order" case n, = n is given by G = r = I, and M = QPf. Since T = I,, and thus
T, = 0, (3.27) and (3.28) reduce to the standard observer and regulator Riccati equations
and (3.9)-(3.11) yield the usual LQG expressions. Furthermore, note that in the
full-order case

(3.31) A =A+BCc-BC

and (3.29) and (3.31) can be written as3 (3.32) 0= (A + B C)Q+ Q(A,+ BcC)T+ BcV 2Bc,

(3.33) 0 = (Ac - BCQ)r/ + P(A,- BCQ)+ CTR 2 C,.

Since, as is well known, the stability of A corresponds to the stability of A + BCc
Ac + B¢C and A - BcC = A, - BC, it follows from standard results (e.g., [62, pp. 48,
277]) that the positive-definiteness conditions (3.14a, b) are equivalent to the assump-
tion that (A. B, .C) is controllable and observable.

To obtain a geometric intepretation of the optimal projection we introduce the
quasi-full-state estimate

I i(t) A G*x (t)E C-
so that Ti(t)= e(t) and x(t)= ri(t). Now, the closed-loop system (3.1)-(3.4) can be

written as

(3.34) *(t) = Ax(t) - BCt1(t)+ H,w(t),

(3.35) x(t) = r(A + BC - BC)Ti(t)+ TBC(Cx(t) + H 2w(t)),3 where (3.35) is interpreted in the sense of (3.34) since i(t) e *T and where

4 4A QC*V', ,A -R2'B*P.

It can thus be seen that the geometric structure of the quasi-full-order compensator is
entirely dictated by the projection T. In particular, control inputs r(t) determined by

I
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(3.35) are contained in g(7) and sensor inputs "By(t) are annihilated unless they are
contained in [.r(?)]± = ("*). Consequently, 9(.r) and 9(v*) are the control and
observation subspaces, respectively, of the compensator. Since r is not necessarily an
orthogonal projection, these (finite-dimensional) subspaces may be different.

From the form of (3.35) it is tempting to suggest that the optimal fixed-order I
dynamic compensator can be obtained by projecting the full-order (infinite-
dimensional) LQG compensator. However, this is generally impossible for the following
simple reason. Although the expressions for A,, B, and C, in (3.9)-(3.1) have the
form of a projection of the full-order LQG compensator, the operators Q and P in I
(3.9)-(3.11) are not the solutions of the usual LQG Riccati equations but instead must
be obtained by simultaneously solving all four coupled equations (3.15)-(3.18). This
observation reinforces the statement made in § 1 that the optimal fixed-order dynamic U
compensator cannot in general be obtained by LQG followed by closed-loop controller
reduction as in [14] and (15].

We now give an explicit characterization of the optimal projection in terms of 1
and P. Since QP has finite rank, its Drazin inverse (Qpi)D exists (see [63, Thin. 6, p.
108]) and, since (QP)2= G*M 2r, and hence p(Qp) POP), the "index" of QP (see
[63], [64]) is 1. In this case the Drazin inverse is traditionally called the group inverse
and is denoted by (IP), (see, e.g., [64, p. 124] or [65]). I

PROPOSITION 3.6. The optimal projection T is given by

(3.36) 7 = I(Q ),.

Proof It is easy to verify that the conditions characterizing the Drazin inverse
[63] forthe case that QP has index 1 are satisfied by G*M-F. Hence (66), = QPM-Ir
and (3.8) implies (3.36). 0

We now give an alternative characterization of the optimal projection by introduc-
ing the following notation from [51, p. 73]. For 41, e X define the operator 0® ,E

(X) by 3
and note that p(o®@)4)= I if 4, and 41 are both nonzero and (0 ®/v)*=# ®6. Using
this notation, (3.21a) can be written as I
(3.37) Q -= Q P) iG ,

where , is an orthonormal basis for . In terms of the Riesz bases (see e.g., [52,
p. 309])

(3.37) is equivalent to

(3.38) Q= A ,4®, I
which can be regarded as a specialized spectral decomposition of a semisimple operator.
We emphasize that, in contrast to the singular value decomposition for compact
nonnormal operators (see, e.g., [50, p. 261]), the A, in (3.38) are eigenvalues of QP
(see Remark 3.1), not singular values. Moreover, although {46 }'.1 and {e,] . are bases
for Y, they are not necessarily orthogonal. They are, however, biorthonormal, i.e.,
(0i, O'A= 8,, and hence 4,®4V, is a rank-one projection and (40,®,)(6j®@i) =0, i #j.

I
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Since r is a rank.n. projection, it is not surprising that r is given precisely by

(3.39) .

The following result summarizes the above observations.
NOPOSrTON 3.7. There exist biorthonormal linearly independent sets {.,}1 .,

19(A) and {,}-c ,(A*) such that (3.38) and (3.39) hold. Furthermore, if the
(G, M, r)-factorization of QP is chosen such that M = A, then, for all x E W,

Ox WC(, ,01), • • • ,(X, 00,)),

rx = ((x, 4,),. . (X, 0,,,))T.
I I Remark 3.3. Note that and '* are given by

and, for all y A(y" .. Y,,)TERI*, G* and I* satisfy

G*y = MY", r*y = 2 YA.

4. Proof of the Main Theorem. We state and prove a series of lemmas which allow
us to compute the Frechet derivatives of J with respect to A, B, and C, Requiring
that these derivatives vanish leads to the necessary conditions in their "primitive"
form. A transformation of variables then leads to the form of the necessary conditions
(3.9)-(3.18).

Let "u-lim" denote the uniform limit (i.e., limit in operator norm) for bounded
linear operators [50, p. 150] and, for strongly continuous S(t) E() t 0, interpret
the strong integral 1:, S(t) dt according to Q S(t)z dt, z e ge [50, p. 152]. Also recall
the standard fact [6, p. 186] that (eA)* = e ' and similarly for A. Throughout this
section let (A,, B, C,) 6 d, and let a, 0 > 0 satisfy (3.6).

To begin, note that the closed-loop system (3.1)-(3.4) can be written as

(4.1) ;U(t)+ Aw(t),

where

H, E E(eR).L BCHZJ

3 For convenience define the nonnegative-definite operator

0n * BVBj, 0T

I In terms of the augmented state g(t), the performance criterion (3.5) becomes

(4.2) J(A., B., C ) - liraEm t, t)

where the nonnegative-definite operator R is defined by

A , 0[ go

I
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To write (4.2) in terms of the covariance of i(t), recall [6, p. 308] that the

covariance "E[(f-Ef)( -Ee)*]" of a Hilbert-space-valued weak random variable
is defined to be the nonnegative-definite operator S which satisfies

(Sy, z) = E( - Ef, y)(f - Efe, z)1

for all y, z in the Hilbert space. Hence define [6, p. 317]
45(t) A E[(:Z(t) - EU(t) )(i?(t) -UE(t))*].

LEMMA 4.1. Q A u-lim,-.r (5(t) exists and is given by
(4.3) Q :e/ fle"*' dt.

Furthermore,
(4.4) J(A., B,. C,) = tr 45k

Proof. First compute (as in [6, p. 317])

((5(t);, z) E(i(t) - eAiEi(0), y)(i(t) - eA4Ei(O), z)

= E(f eA,-s) iA(s) ds, eAd(o,, .)dr,

+(Q5(0) e Af;, e Arti)

=E E E (i(s), A* eA (t-S)y)(v(cr),t* eA '('-ca)z) dsd.,

+(eA,0(0) e;" , z)

=o (eA(13) f/eA(r5), z-) ds +(e-4'0(0) eAt$, z),

which shows that C(t) is given by

45(t) = eA'4Q(0) ea+f eAVeA ' ds.

Clearly, (4.3) makes sense as a strong integral since

To demonstrate uniform convergence it need only be noted that

- s e()l= sulSp I e0-d-(t)wll

SU le A. ekil ds eA (O) e,
-f , IleA' feA "ll as + 11 e4'4(O) e A*,,

g 1a2 fll P -' e- "0'+ 110(0)11 - '. 1

I
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Next, let I be an orthonormal basis for *t and us e Parseval's equality to obtain

* Since

MO t ? 0

is nonnegative for each n and is increasing in n for each Iwith limit (~()it)
monotone convergence permits expectation-limit interchange. Hence using E i(t)
eAlEiE(O) we have

I-0
- limi {t A 2 (tA"] i~ eAE(O)t2I-C

which by Corollary 2.1 yields (4.4). 0
We shall also require the "dual" of Q5 given by

(4.5) P=f e"'R e~'dt.

1 Since V and A are nonnegative definite it is readily seen that Q5 and A are also
nonnegative definite.

LEMMA 4.2. , P E 9,(*t).I Pnoof. It suffices to consider Q only since the situation for P is exactly analogous.
Since Q is nonnegative definite, Lemma 2.3 can be used. Letting be an
orthonormal basis for *t, we have

tr4 = 0, i-iJ) I' "Oj,0

= lim ( eA4 ; e'f,) Ai

Let f.(t) denote the above integrand. Since P is nonnegative definite, {f, }is a
monotonically increasing sequence of nonnegative functions such that f,,(t) -
tr eAl ~e-", t 0. Hence, by monotone convergence and Lemma 2.2,

Itrt= tr [e~r feksi d

3f =J ie"'f~e"*'j, dtg~a2j1j f, e: -1' dt < o.0

LEMMA 4.3. With d and PS given by (4.3) and (4.5) it follows that

I(4.6) tr AtrA
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Proof. For any orthonormal basis {0}= of * we have

tr AtrRQ Afe~Att

I _: I A 

Letting f. (t) denote the above integrand it follows that f.(t) - tr eA *', t - 0, and

V .( t~l =  E I e *' .6" , -k,)j9 a 211 r11 e - 20( C I . ,1

c h o s e n t o

If {4j = is chosen to be the set of orthonormal eigenvectors of A then Lemma 2.1
implies Z]. li,4,, ] - Ril and thus lf.(t)l is bounded on [0, 00) by an integrable
function. Hence by dominated convergence,

tr 45A = ftr [ A eA'Vee" dtAIV tr[eA"R eA ] dt (o,, eAR eA')dt

And again using dominated convergence, 3
-1 d0 = 2: (P10j, fJ eAA eAttki dt) = tr 0. 0

The next result is important in that it allows us to treat 4 and P7 as solutions of
dual algebraic Lyapunov equations. For a similar result involving groups rather than
semigroups see [50, pp. 555-557].

LEMMA 4.4. Q is given by (4.3) if and only if QE (*) satisfies
(4.7) 45: 9(A-*) 2 (A-),

(4.8) 0 = A10 + A* + f,

where (4.8) holds in the sense discussed in § 3. Furthermore, P is given by (4.5) if and

only if P e 1 (fe) satisfies

(4.9) P: ().(*,3

(4.10) 0=A*P+PA+ R.

Proof We consider only. To prove necessity let t'> 0. Then for all t E [0, t')
and iE g(A*) we can write

e At e A* x = f e (+s f e '+')ids 3
Hence, =J e d'fe eA*('1)ida.

(4.11) e- e e'"e = ,AJeAG A*" ( "'" t)A*Rdo -e At,

which shows that e A80 e A-' is strongly differentiable with respect to t for all I e [0, t').
In particular, setting t =0 it follows that QeA'"i ie(A) for all ;e 9(A*) (see, e.g.,
[6, p. 173] or (50, p. 485]). Performing the differentiation on the left-hand side of

I
I



1 140 D. S. BERNSTEIN AND D. C. HYLAND

(4.11) and setting t = 0 yields

(4.12) A eA*'i = - f e '" e ' eA* A i'"*da- VeA'"

Now fix ij e9(A*). Then for I t>0, , ,0, we have

,0 eI A " (A), i= 1, 2,A3, • •.,

Now consider the sequence {Ad e * I - , Letting t'= I in (4.12) and using dominated
convergence to interchange limit and integration (A* is a fixed element of W), it
follows that

(4.13) lrn AO e A e Av VeA *OAida-V;y

Since A is closed, 5i E 9(A). This proves (4.7). Also, since A is closed we have

-nm Ad eA,i = Aj.i,

which with (4.13) implies

and hence ( Ad + 41,4 + fo = 0, ; E !2

as desired.
To prove sufficiency let ie 2(A). Then eA"E q(A*), t 0, and hence

d e Asoe Axi= e A(A45+QA*) e At

I Thus

eQso ex tE-di = f e'(Aki+Q4A*) e A*sidS, ieqA*).

Extending k + dA* to all of * we obtain

I *A#4 Afi~ = E eAI~eAsids, i

Letting t-co yields (4.3). 0
We now introduce some notation which will prove to be most convenient in the

following results. For (A', B', C')eR"- 'xR" "x R" " define

I and SA A A - & 8,j A Bs - B,, 8c, A C - C,

1 (8.,. 88., Sc) 11II .II0 + 11a, I1 + 08cl.

Furthermore, let A', C" and A' denote ,, V' and A with (Ar B, C,) replaced by

I
I.
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(A', B, C') and define 3 B

6AA ,-A = [68 C 8,A i .'g, V2,5T o ]
oh " a~ Bv2 + + aVBC7v+SB,v 2B]'

SA A'-R=I00 CTR2  + +5fR2C++ 5cR 2 ,]" 3
We shall also write Q', P' for 5, ,P as given by (4.3) and (4.5) with A V. A replaced

by A', VP', A' and define
8f'A0'-, a,A/3,-A3

LEMMA 4.5. i is open.
Proof. Let (A,, Bo, C,) e.jd be arbitrary and consider the open set

(4.14) NA {(A B, C:,) e n Rx xR"' xRmxn : l(8A,8a,Bc,)1 <9/2ay},

where ,Amax {1,I~ll, ICII}. Then, since A'=A+8A and SAe 90(K) it follows from I
Theorem 2.1, p. 497 of [50], that for all (Ac, B' , C') e N and t ? 0,

11 eA "l 11 Z e(-A+ a' P)# g a e-Pt/2 .

Hence, N- ai, as desired. h0
LEMMA 4.6. There exists c > 0 such that

(4.15) 11011 - Cl(,, A 8c), I
(4.16) 11411l9 C- 1 05lA., 811, SC,)11,

for all (A', B' , C')e N, where N c d is the open neighborhood of (A,, Bc, Cc) defined 3
by (4.14).c

Proof We consider (4.15) only. Since 1IeA"l 9ae-lff2, t 0, (A,, B, C':)e N, it
follows that 3

Ioo .
18019E0IeA fl! A- At fl e A* 11 dt !

A,,, Il,1A, ,;9 J(Ile'j 11"h leAf -eAIl + leA Ih 118pll IeA*I + H eA" - e ' Jll hle tjl}di

(4.17) r I(el (Al +ll6l) f e e "A"- ek"l •-'l d3

+ a e-3t2 di + a, H f'l J 0 e(A+IA)t - e~R 1 e-0 2 d,
" o©  (A+&A,)t , -D/2 22

a(211 V'g + 0411) J le el e dr +21

From [50, p. 497], it follows that the perturbed semigroup e(A+ w has an expansion

e(A+0 e e A,+ . U(t), tit0,

I
I
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where U(t) (), t9 0, satisfy the estimates
B LI,(tOfl <- a'+'I6RII' eD111i!.

Hence, for all (A,, B', C') e N,

(4.18) lie (.A+ A) e Atli Y Jj U(t) j ae-p1[e n8A1 11

I From (4.17), (4.18) and the relations 18A11 - Yll(SA., , Sc,)11 < 0/2a and

Jo[ea"Al -1] e 3B'9/2 dt 1(4A,, 8s,,.5c,)I

I it follows that E 
3 ,

2a3.#3HII ll- (2U1 VU + il 8dl)ll(8A°. 8.,, bc.)iI

+2 (211B V21I 1188a11 + II V211 I 8a1),

I which yields (4.15). 0 3

Since Q, Pe A(*t) we can writeI , =r[o2 Q,2] r,', ,',]
Q 1* Q-,J P, 1P*2 P2J

where Q1 e a(7'), Q1 2e E 9(R',), Q2 e R"-"', and similarly for P1, Pt2 and P2. Note
that Q1, Q2, P, and P2 are nonnegative definite. Also, define the notation

F = 1 [ Z 121

where 
Z2 1 _2'

Z, A P, Q1 + PI2Q *2, Z12A P, Q12 + P12Q2 ,

Z2 A P 1*2 Q+ P2 Q*2, Z2A P*2Q 1 2 + P2Q2,

and, for (A', B', C') e si, let

I bJ(BA,, as,, 8c)AJ(A,,, B, C')-J(A, B. C,).

LEMMA 4.7. Let (A,, B, C:) e d. Then3 (4.19) 6(8 ,, S , 8 )= .B("'(8 , 8C) + 0(11(8A, h,. 8c)l),

where

(4.20) -(SA, 8D, Sc,) A 2 tr [Z 28A,] + 2 tr [( V2BTP 2+ CZ*)8s,]

+2 tr [+ Q2 T +Z*B).5,

and

(4.21) lim II(B,, 88o, 8c,)l'o(B(A,, 8B,, 8c)11) = 0.

Proof. Combining (4.8) and (4.10) with (4.6), J can be written as

J(A, B. C) = tr (OA + K1f +4 trR[ cl (A' + ) + 1 cl (,4o + OA*)],

I
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and likewise for (A,, B', C' ), where "cl" denotes closure (i.e., extension) of a bounded
operator to all of . Now using the identity

tr [ 40'A'+ P' 1 ] - tr [ k3R + AV7] = tr [ (,38, + hip ] + tr [ 80kR' 7]

we can compute

8jA(S,, SB, Sc,) =tr [Q3 + P8,] +4 tr [( cl (A*(P+ 8s)+(P + .5).')]
+ 2 t r [ 8 s c l ( A ,'* P + J', ') ]
*+-, tr [J5 cl (A'('o + 80) + ((5 0,E')

I
-' tr[ cl (A*fP+,PA) +P cl (A + )*)I

+ tr [ 6A'+ B's'].

Using A = A + 8 and combining the second, fourth and sixth terms yields I
8J(8A,, 8r,, 8c,)= A+fl,

where 3
A A tr [SA +P 8)] +1 tr [1(8A +P85R) +P(8A k5 +8)]

= tr [8 +16bo] + 2 tr [8ARP]
and I

flA- tr[ cl (A'*8 +58A')+ P cl (A8'0+80'*)I

+ 2 tr [80 cl (A'*P,+ PA') + 8 A cl (k( '+ +"4*) +tr [8,R'+ 6 lP].Hi

Computing

tr A +A8 p] = 2 tr + VBTp 2 8B+2 tr [Q 2 CCR 28c] +tr [P 2 ,8 V 28T, + Q 28TR,s,]i

and

2 tr [5AQ 0 = 2 tr [Z-A, I + 2 tr [CZ* 8B,] +2 tr [Z*BSc,] 3
and retaining first-order terms, we obtain (4.20).

To evaluate fl, use (4.8) and (4.10) to replace R' and ia ia the last term in fl and
write A' = A + BA, to obtain I

il = 2tr[ C cl (A*8 p + pA) +/P cl (A5,) + 6 0 ,)]

(4.22) +4 tr [(i(8,tp + js8A) + P(8BA60 + BO*) ] i

- tr [ c (A'8)+ PA'') + 8 cl (,'Q'+ Q', *)I.

Next we note that

(4.23) trI[1 cl (A*8+ S.pA*)] = tr [8j. cl (AQ+ QA*)].

To see this we observe that by arguments similar to those used in the proof of Lemma
4.4 and the fact that 8 s: 2(A)- -(A*) it follows that I

N u -i the = cl (A*Ss+ SpA) e ' dt.Jo H

Now, using the technique of Lemma 4.3 with the role of A played by -cl (,*"B, + 8.,4),

I
I
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we see that

Similarly, it can be shown that

(4.24) tr [f cl (A8+ 8OA*)] = tr [BO cl (A*i+ N)].

Now substitute (4.23) and (4.24) into (4.22) and rearrange the second term in (4.22)* so that
st =A Itr [8 0 cl (A*P+ PA) +.8 cl (AQ+ QdA*)]

+1 tr2[,~6P 5)+8(~+()

- tr [8 0 cl (A */,+ PA') + 8p cl (A''+ ('A'*)]

= -4 tr [80 cl (A'*8, + &pA') + Sp cl (A'SO + BOA ) ] .

3 Using (4.8) to obtain
0 -A'SO + BOA'* + BAd+ C)t+ S

and (4.10) to obtain a similar relation involving P, we have

A= tr [60(85/P+ P8 A+ )] + tr [Ape + 08 * +)].

Restricting (A,, B', C.) to N (see (4.14)), using Lemma 4.6 and noting that 8 A and
SA have finite rank, it follows that there exists c > 0 such that

(4.25) I(tl1 S c, Il(8.., 88",5,)112.

Combining [I with the second-order terms in A yields the desired result. 0
LEMMA 4.8. d+ is open.
Proof. From the "generic- property of controllability and observability [62, p. 44]

there exists an open neighborhood of (A,, B, C) each of whose elements is minimal.

Combining this fact with Lemma 4.5 yields the desired result. 0
LEMMA 4.9. Q2 and P2 are positive definite.
Proof First note that expanding the R",'",-component of the Lyapunov equation

(4.8) yields (4.50) below. By a minor extension of results from [66] or [67], (4.50) can
be rewritten as

0= (A,+ BcCQ 12Q27)Q2 + QW(A + BCQ, 2Q2)T+ BV 2Bc ,

where Q+ is the Moore-Penrose or Drazin generalized inverse of Q2. Next note that
since (A,, Bc) is controllable then so is (A, + BCCQI 2QQ2, B V21

2 ). Now, since Q, and
B,,V2BT are nonnegative definite, it follows from [62, Lemma 12.2) that Q2 is positive
definite. Similar arguments show that P2 is positive definite. 0

Having established Lemmas 4.1-4.9, we can now proceed with the proof of the
Main Theorem. Let (Ac, B,, C) e d be as in the Main Theorem and consider (4.19)
with (A', B', C') confined to d.. Because .Y: R" " xR ", " xR ' R is a bounded

linear functional and di+ is open, the convergence in (4.21) implies that .Y is precisely
the Frechet derivative of J with respect to (A. B, C). Since +, is open, the optimality

of (A B,, C,) implies

(4.26) 2 (5
A, 8,,, ,) = 0

for all (SA,, 81,, SC,). Clearly, (4.26) is equivalent to

(4.27) Z= O,

I
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(4.28) V2BP TP,+ CZ2, = 0,

(4.29) Q2C "R2 + Z*12B = 0.

Thus, B, and C, are given by

(4.30) B1=-P2jZ 2 1 CV2',

(4.31) Cc= -2B*Z- 2 Q2

Although B, and Cc are now determined in terms of Q and A6 A, remains to be
found. Moreover, 4i and P themselves depend (via (4.8) and (4.10)) on Bc and C,
Hence our task now is to consolidate and simplify (4.7)-(4.10), (4.27), (4.30) and (4.3 1)
to obtain the more tractable conditions (3.9)-(3.18). To this end let us define new
variables I
(4.32a, b) QA Q,- Q 2 Q21Q*2, PA P, - PP 'P*,

(4.33a, b) Q, 2 Q2-'Q*2, A P, 2P2'P*.

Clearly, Q and P are nonnegative definite and have finite rank. Since by Lemma 4.2
Q, Pe (*), it can be seen that Q1, P, E , (Ye), which implies Q, P E R,(9). To show
that Q and P are nonnegative definite, note that Q is the R(Y)-component of the
nonnegative-definite operator 9Q* E 90(f'), where

10[' -, 1 '

Similarly, P is nonnegative definite.
From the domain conditions (4.7) and (4.9) it follows that

(4.34a, b) Qj: 9(A*) -. a(A), PI: -(A) - (A*),1
(4.35a, b) Q12: R",-- 2(A), P12:R"-.9(A*),

which lead to (3.12) and (3.13).
Next note that (4.27) is equivalent to (3.8) with

(4.36a, b) G A Q21Q*, r A -P'1P*2

and that (3.7) holds with

(4.37) M -A Q 2P2.

Since Q2 and P2 are positive definite, Lemma 2.6 implies that M is positive semisimple. 3
We can also define r= G*r which, by (3.8) satisfies r 2 

7. It is helpful to note the
identities

(4.38a, b) Q = Q 12G = G*Q*2, P = -P12r = -r*P*, 3
(4.39a, b) = G*Q 2G, P = r* P 2r,

(4.40a, b) rG = G*, r = 1,

(4.41a, b) 4 = , = A',

(4.42) Of, = -Q, 2 P* 2

From (3.8) and (2.1) it follows that

(4.43a, b) p(G) = p(r) = n.

(4.44a, b) P(Q 2) = P(P 2) = nc. 3

I
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Hence, (2.2) and (4.38) imply n,=p(Q12)+p(G)-n <-p( );-P(Q,2)=ne, which
yields (3.14a). Similarly, (3.14b) holds and (3.14c) follows from (2.2) and (4.42).

Using (4.38) and (4.39), the components of Q and P can be written in terms ofG, r, Q, P, Q and A& as

(4.45) Q,= Q+Q, P=P+P,

(4.46) Q12 = Qr*, P. = G*

(4.47) Q2=r 'r*, P2 = GG*.

Now (3.10) and (3.11) can be obtained by substituting (4.45)-(4.47) into (4.30) and
(4.31).

Expanding the 6(ge), R(R",, X) and R", x" components of (4.8) and (4.10) yields

(4.48) 0 = AQ + Q, A* + BCCQ*2+ Q12(BC)* + Vi,

(4.49) 0= AQ 12 + Q12Ar + BCQ 2 + Q,(B C)*,

(4.50) 0 = AcQ 2 + Q2A[ + BcCQ2 + Q*2(BC )* + B V2B ,

(4.51) 0=A*P1 +P1 A+(BcC)*P*2+P,,BcC+R,3 (4.52) 0= P,2Ac+A*P1 2 +(B C)*P2+PIBCC,

(4.53) 0 = AlP2 + P2A + (BCc)* P,2 + P*2BC + C R2C,

Substituting (4.45)-(4.47) into (4.48)-(4.53), using the identities

B C = rQ!, BCc = -I PG*,

and defining BCV2B rQ1Qr*, C R 2 Cc = GPIPG*,

Ao -,A A - Q1., A, .- A - I.P,

we obtain

(4.54) 0 = AQ+ QA*+Ap6+ QAp + V,

(4.55) 0 = [A + QQ + ^(F*AlG +,IQ))r*,1 (4.56) 0 = r[G*AroY + Q0 + QSQ + Q(r*A'G +Q)]r*,

(4.57) 0= A*P+ P+Ao+i + Rl,

(4.58) 0 = -[A*Q P + PIP + P(G*Acr+ iP)](*,

(4.59) 0 = G[r* ATGP + PIP + P P + f'(G*Acr + IP)]G*.

We are now in a position to determine A, by computing (4.56) - r(4.55) which
yields (3.9). Alternatively, Ac can be obtained by computing (4.59)+ G(4.58). As
mentioned in § 3, (3.9) is valid since G*:R", - (A) and ACT is given by (3.26).

Next we substitute the expressions for A, and A." into (4.55), (4.56), (4.58) and
(4.59) and compute the relations (4.55)G, G*(4.56)G, -(4.58)r and F*(4.59)W to
obtain, respectively,

(4.60) 0= [AA + (A* + Q!Q]'*,

(4.61) 0=7-[A,,Q+4A*+QQ]-r*,

(4.62) 0= [A P+ PAQ+ PIPJ),

(4.63) 0= T*[A~fi+ PAQ+ PIP).

I
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Note that (4.60)-(4.63) are equivalent to (4.55), (4.56), (4.58) and (4.59) since G and
r have full rank. Since ( 4 .6 1) =--(4.60 ) and (4.63)= T*(4.62), (4.61) and (4.63) are
superfluous and can be omitted. Thus we have derived (3.17) and (3.18).

To obtain (3.15) and (3.16) we need only compute the relations (4.54)+ 7(4.60)-
(4.60) - (4.60)* and (4.57) + I"*(4.62) - (4.62) - (4.62)* and use (4.41).

Finally, to show that the preceding development entails no loss of generality in I
the optimality conditions we now use (3.9)-(3.18) to obtain (4.7)-(4.10) and (4.27)-
(4.29). Let A,, B , C., G, 1, 7, Q, P, , be as in the theorem statement and define
Q1, Ql,, Q2, P1. P12, P. by (4.45)-(4.47). Note that (3.12) and (3.13) imply (4.34) and
(4.35) and hence (4.7) and (4.9). Using (3.8), (3.10), (3.11) and (3.22) it is easy to
verify (4.27)-(4.29). Finally, substitute (4.32), (4.33) and (4.36) into (3.15)-(3.18),
reverse the steps taken earlier in the proof and use (3.9)-(3.11) to obtain (4.8) and I
(4.10), which completes the Proof. r-

5. Concluding remarks. This paper has considered the problem of quadratically
optimal, steady-state, fixed-order dynamic compensation for linear infinite-dimensional
systems. The Main Theorem presents the stationarity conditions of the optimization
problem in a highly simplified and rigorous form. The "optimal projection equations"
(3.15)-(3.18) (or, equivalently, (3.27)-(3.30)) of the Main Theorem reveal the essential 1
structure of the first-order necessary conditions and display the central role played by
the optimal projection 7. The relationship of the Main Theorem to the standard
finite-dimensional steady-state LQG problem can be demonstrated by replacing '" with
the identity matrix and noting that (3.27) and (3.28) reduce immediately to the familiar
pair of operator Riccati equations and that (3.29) and (3.30) yield the controllability
and observability gramians of the controller.

Inasmuch as the Main Theorem is a fundamental generalization of classical
steady-state LQG theory, a number of issues must be reexamined. Hence, in conclusion
we should like to point out some possible extensions of the Main Theorem along with
directions for further research.

1. Sufficiency theory. Although sufficient conditions for the existence of an optimal
compensator were not investigated in this paper, auxiliary conditions based upon the
structure of (3.15)-(3.18) could perhaps be imposed upon Q, P, Q and P to single out
the global optimum from amongst the local minima. This would be similar to the
situation in LQG theory where, under stabilizability and detectability hypotheses,
optimal stabilizing Q and P are identified as the unique nonnegative-definite solutions
of the pair of algebraic Riccati equations. I

2. Stabilizability. Just as in the full-order LQG problem, one would expect a
natural relationship between the structure of the optimal solution and stabilizabil-
ity/detectability hypotheses. The results of [41], [42] and [68] could serve as a starting
point in this regard.

3. Numerical algorithms. In practical situations, the distributed parameter system
would be replaced by a high-order discretized model for which the matrix version
(rather than the operator version) of the optimal projection equations could be solved
numerically. A numerical algorithm for solving the matrix version of the optimal
projection equations has been developed in [32] and [34]. The proposed computational
scheme is fundamentally quite different from gradient search algorithms [17], [18],
[21], [22], [24], [25], [28], [30] in that it operates through direct solution of the optimal
projection equations by iterative refinement of the optimal projection.

4. Convergence. One of the principal uses for the optimal projection equations
will be to understand the relationship between fixed-order dynamic-compensator

I
I



148 D. S. BERNSTEIN AND D. C. HYLAND

designs which are optimal with respect to approximate models and the optimal
fixed-order dynamic compensator for the distributed parameter system itself. By con-
sidering a sequence of nth-order approximate models which converge to the distributed
parameter system, conditions would be sought guaranteeing that the sequence of
fixed-order compensators based on each approximate model approach the optimal
dynamic compensator based upon the distributed parameter system (see [38]-[40]).
This approach is analogous to the convergence results obtained in [7], [8] with the
major difference being that the optimal projection equations permit the order of the
compensator to remain fixed in accordance with real-world implementation constraints
whereas in [7]-[9] the order of the compensator increases without bound.

5. Unbounded control and observation. An important generalization of the problem
considered in this paper involves the case in which the input and output operators B
and C are unbounded. The mathematical details for this problem are considerably
more complex (see, e.g., [69]).

6. Singular observation noise/singular control weighting. As pointed out in [22],
[33], [36] the assumptions of nonsingular control weighting and nonsingular observa-
tion noise preclude the use of direct output feedback as in

(5.1) uMt = C'xJ(t)+ D)y(t)

since J is undefined unless

tr [DTR2DKV] = 0(4* R,DV 2 = 0).

Although with due attention to (5.1) direct output feedback can be used in the singular
case, the nature of the problem forebodes all of the difficulties associated with the
singular LQG problem. Note that the deterministic output feedback problem [70],
when viewed in this context, is highly singular.

7. Discrete-time system/discrete-time compensator. Digital implementation can be
modelled by a discrete-time compensator with control of a continuous-time system
facilitated by sampling and reconstruction devices. See [71], [73] for results in this
direction.

8. Cross weighting/correlated disturbance and observation noise. This extension is
straightforward and entirely analogous to the LQG case (see, e.g., [18, p. 351]).
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1. Introduction

Approximation methods for the optimal control of distributed parameter systems have been

widely studied. In particular, the approach taken in [1-121 involves approximating the original

distributed parameter system by a sequence of finite-dimensional systems and then using finite-

dimensional control-design techniques to obtain a sequence of approximating, sub-optimal control

laws, observers, or compensators. Furthermore, in these treatments it was demonstrated that if

the open-loop system is approximated appropriately, then it is possible to guarantee convergence

of the sequence of sub-optimal controllers, observers, or compensators, respectively, to the optimal

controller, observer, or compensator for the original infinite-dimensional system. In addition, it

can also be shown that when the approximating sub-optimal control laws or estimators are applied

to the original system, near-optimal performance can frequently be obtained. These ideas were

pursued in the context of both open- and closed-loop control, in both continuous and discrete-time, I
and for both full-state-feedback control and LQG (i.e., Kalman-filter-based) state estimation and

compensation.

In practical situations, however, it is often of interest to obtain the simplest (i.e., the lowest

order) controller which provides a given, desired feedback performance. This is usually achieved

in one of two ways. Either the plant approximation order is reduced prior to controller design, or,

alternatively, reduction techniques are applied to a given high-order control law. Unfortunately,

the former approach may result in undesirable spillover effects while the latter may yield low-order

controllers of low authority which perform unacceptably. In fact, with the second approach, this 5
may occur even when a suitable controller is known to exist. For example, as is shown in [13],

controller reduction techniques may even destabilize the closed-loop system. 3
A third, more direct approach involves fixing the controller order a priori, and then optimizing

a performance criterion over the class of fixed-order controllers. In a finite-dimensional setting, a 3
set of necessary conditions in the form of four coupled matrix equations (as a direct extension of

the pair of the separated Riccati equations of LQG theory) which characterize the optimal fixed- 3
order compensator was derived in [14]. These four equations are coupled via an oblique projection

(idempotent) matrix. In the full-order case, this projection becomes the identity thus effectively I
eliminating the additional two equations, and the necessary conditions reduce to the standard LQG

Riccati equations. i

1 1
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I
The notion that this direct (i.e., fixed-finite-order) approach can be applied to distributed

I parameter systems was first suggested by Johnson in [15] and further developed in [16] and [17].

To realize such an approach, however, would require a suitable generalization of the optimality3 conditions for the finite-dimensional fixed-order theory. This result was subsequently obtained in

[18] where the matrix optimal projection equations obtained in [14] for finite-dimensional systems

were extended to a set of four coupled operator Riccati and Lyapunov equations characterizing

optimal fixed-finite-order controllers for infinite-dimensional systems.

1 In developing numerical schemes to actually compute fixed-finite-order compensators for

infinite-dimensional systems, one might consider an approach wherein LQG reduction procedures

5are applied to a sequence of controllers obtained by using finite-dimensional full-order design tech-

niques in conjunction with high-order finite-dimensional plant approximations. However, such an

approach is unappealing for two reasons. First, since such methods are not predicated on the

minimization of a performance index, prospects for convergence are slim. And, second, controller-

reduction methods have not proven to be reliable in producing stabilizing compensators (see, for

example, [13]).

3 Hence, on the other hand, we develop an abstract approximation framework (and ultimately

computational schemes) which combine the infinite-dimensional optimal projection theory of [18]

with the approximation ideas developed in [9-121 for infinite-dimensional LQG problems. More

precisely, our approach involves constructing a sequence of approximating finite-dimensional sub-

spaces of the original, underlying, infinite-dimensional Hilbert state space along with correspond-

ing sequences of bounded linear operators which approximate the given input, output, and system3 operators. Then, by choosing bases for these approximating subspaces and applying the finite-

dimensional optimal projection theory, a sequence of matrix equations characterizing a sequence

of approximating optimal, fixed-finite-order compensators for the distributed system is obtained.

Finally, numerical techniques for solving the matrix optimal projection equations (for example, the

homotopic continuation algorithm described in [191 and [20]) can be used to compute the sequence

of approximating gains.

I Our primary aim in this paper is to describe the general approach we are proposing, to discuss

its implementation, and to demonstrate its feasibility and practicality. We offer no convergence3 arguments here, but rather reserve them for a more theoretical paper to follow. Instead, we consider

the application of our technique to two examples. One involves the control of a one-dimensional,

!2
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single-input, single-output parabolic (heat/diffusion) system while the other involves a single-input

single-output one-dimensional hereditary control system. These relatively simple examples have

been used throughout the distributed parameter control literature to illustrate the application of

new theories and techniques. A detailed discussion of the application of our ideas to more complex I
control systems, for instance, the vibration control of flexible structures, will also appear elsewhere.

We use spline- based Ritz-Galerkin finite element schemes to approximate the open-loop systems

(one for which convergence can be demonstrated in the LQG case) and present and discuss some

of the numerical results which we have obtained using our general approximation framework.

We now outline the remainder of the paper. In Section 2 we briefly review the infinite-

dimensional optimal projection theory from [18], describe the approximation framework, and derive

the corresponding equivalent matrix equations and feedback gains which characterize the approx-

imating fixed-finite-order compensator. In Section 3 we consider the examples, construct the ap-

proximation schemes, and discuss our numerical findings. Section 4 contains a summary and some

concluding remarks. 5
2. Optimal Projection Theory and Finite-Dimensional Approximation 3

We consider the following fixed-finite-order dynamic-compensation problem. Given the infinite-

dimensional control system

:(t) = Ax(t) + Bu(t) + Hlw(t) (2.1)

with measurements I
y(t) = Cx(t) + H2 W(t), (2.2)

where t C (0, oo), design a finite-dimensional, nth-order dynamic compensator

:i()= A~x,(t) + B,(t), (2.3)5

u(t) = CXz,(t) (2.4) I

which minimizes the steady-state performance criterion

J(AC,BC,C) -_ lim IE[(Riz(t),x(t)) + u(t)TR 2u(t)]. (2.5) 1t-.coo

For convenience we denote the infinite-dimensional plant by H7; that is, 3
rr -A (A,B, C, RI,R 2 , VI,V2 ).3
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Here =(t) lies in a real, separable Hilbert space X with inner product (., .),A : Dom (A) c X --+ X is

a closed, densely defined operator which generates a Co semigroup {T(t) : t 'e 0} of bounded linear

operators on X,B E £(IRm , X), and C E Z(X,IR). We assume that the state and measurement

are corrupted by a white noise signal w(t) in a real, separable Hilbert space t (see [21] or [22]),

that H, E Z(t, X), H2 = C(, IR), R, E C(X) is (self-adjoint) nonnegative definite, and that R2

is an m x m (symmetric) positive-definite matrix. We define V = HHI and V2 = H2 Hn, where

( )* denotes adjoint, and assume for convenience that HH = 0 and that V2 is positive definite.

The compensator is assumed to be of fixed, finite order n. (i.e., x.(t) E IR"') and that A0, B0,

and C,, are matrices of appropriate dimension. For further details and discussion on the problem

statement and the above assumptions, see [18].

We summarize here the primary result from [18] characterizing optimal fixed-finite-order con-

trollers. For convenience define Z -A BRO-B and 2 -- C*Vi-C. Also let In. and Ix denote

respectively the n. x n, identity matrix and the identity operator on X.

Theorem 2.1. Let n, be given and suppose there exists a controllable and observable nth-

order dynamic compensator (A0 , B., C.) which minimizes J given by (2.5) and for which the closed-

3 loop semigroup generated by

I- B.C A. c

is uniformly exponentially stable. Then there exist nonnegative-definite operators Q, P, Q, P on X

such that A,, B,, and C. are given by

A. = r(A - Q2 - ZP)G° , (2.6)

B. = rQC'v 1 , (2.7)

C,. = -R,-*B*PG", (2.8)

where Q : Dom(A*) -- Dom(A),P : Dom(A)*-. Dom(A*),Q : X -- Dom(A),P: X -*I Dom(A*), and G, r E Z(X,R ), and such that the following conditions are satisfied:

I rank = rank = rank P = nh, (2.9)

3 c=GMr, rG"= I,., (2.10)

for some M E IR"" Xn.

I
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o = AQ + QA" + V1 - QZQ + rQfQr, (2.11)

0 = A*P + PA + R1 - PEP + rIPEPr±, (2.12) 3
0 = (A - EP)40 + O(A - £P)* + QZQ - r.Q2Qr., (2.13)

0 = (A - Q?)*P + P(A - Q2) + PEP - rj.PEPr±, (2.14)

where 3
r&0 'F, T.L= IX- r.

It is shown in 1181 that the factorization (2.10) for the nonnegative-definite operators ( and P

satisfying rank 0]P = n. always exists and is unique except for a change of basis in IR'°.It is also

shown in [181 that *: IR:W -* Dom (A*) so that the expression (2.6) is well defined. I
Equations (2.11)-(2.14) are, in general, infinite-dimensional operator equations. To actually use

them to compute the optimal fixed-order compensator, a finite-dimensional plant approximation is

required. For each N = 1,2,..., let X' denote a finite-dimensional subspace of X and let pN :
X __ ZN denote the corresponding orthogonal projection of X onto rZN. Let AN E £(ZN), BN E

(IR-, XN),CN E C(XN,IRL), RN E Z (ZN), and VIN E £(ZN). We consider the system (2.6)-

(2.14) with the plant IT replaced by the plant ITiN given by

,a N A {AN, BN' CNRN, R2,V'N,V}. I
Typically, the operators BN, CN, RN and VN are chosen as BN - PNB, CN = CP N,1RN =pNR1

and V N = PNV1 with the requirement that pN converge strongly to the identity Ix as N -- oo.

The operator AN is chosen so that it and its adjoint satisfy the hypotheses of the Trotter-Kato

semigroup approximation theorem (i.e., stability and consistency, see, for example, [231). That is,

A N is chosen so that limN--,o. TN(t)PNO4 = T(t)#, and limjv..,. TN(t)pNo = T(t)*O, uniformly

in t for t in bounded intervals, for each 0 E X, where TN(t) = exp(tAN), t > 0. We shall say more

about these choices for AN , BNCN, RN , and VIN when we address convergence questions below.

Although with the plant/fN equations (2.11)-(2.14) are finite dimensional, they are still oper-

ator equations. It is their matriz equivalents which are used in computations. Unless orthonormal

bases are chosen for the subspaces XN (which is typically not the case in practice) some care must

be taken to obtain the appropriate matrix system.

5
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For each N ,2,- let.., let - be a basis for XN and choose the standard bases for all

I Euclidean spaces. For a linear operator L with domain and range ZN or any Euclidean space,

let [LI denote its matrix representation with respect to the bases chosen above. Also, let 4N

3 denote the kNsquare Gram matrix corresponding to the basis (- Ji~v, that is, 0N = (aN, ON),

i,j = 1,2,...,kN. Noting that

[(ANY)] = (ON)-IAN]TON, [(BN)*] -[BN]TON, [(CN)] = (ON)-I[CN]T,

y[(N)] = (ON)-1[j]TN , [EN] = [BNIR l[B N]TN, (2NI = ( N)-I[CN]TVi-[CN],

I Ithe matrix equivalents of the operator equations (2.11)-(2.14) become

S0 - [ANf][Q'N] + [QN](ON)-[AN]TON + [VIN] - [QN[2-N][QN]

+ [rf][qN [2N][q B. ] - (ON) [r I  N , (2.15)

0- (ON)- [AN] T ON[PN] + [pN] _ [AN] + [Rf] - [PN I[,B][PN]

+ (ON)-[r{1 T ![PN - [EN ][pN][1{], (2.16)

0 0 - ([AN] - [zN[pN])[QN] + [ BN]( )- ([AN1I- [BI[PB.)TON
+ [QN][NIN][QN] - [1-N][ -N1[[ [](0)1 _ [rN , (2.17)

( J.)-(IANI- QNI[NI)T N[pN] + [IB.I([A N]- [QN][ZNI)

I + [PNIM[N][PN] - (,pN)-I[rL]TON[PN][ENr][lPN l.[r. (2.18)

Therefore, if we define the kN x kN nonnegative-definite matrices5 N [QN]( N)-l, poN A ON([pN],

04W [N](ON)-1 PON= N[PBNI,

VNA [VN]() - 1, o N [RN],

EN [BBIR l[BN] T, 2o = [CN]TVi-1[CN],

5 we can solve the matrix optimal projection equations given in [14] corresponding to the matrix

plant model3 4- {[AN]'[BNI],[CN1]'R°BJR 2,voNV 2 }

to obtain the matrices Q1, ', N QN and P0 . The approximating optimal nth-order dynamic

A rN ([A N] - Q0NDON - Z0 ePO)(G )T ,

UB =~ rNQN[CN]?Vi-l,

I =- [ 1pN(NT

6
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where rON, GN E lRn.xkN," and MN rE IRneX no SaisfyI

0 G rMNJ rN(GNyr In.

wher N NP×W M N M
F ~ ~ Go 0o 0 R" ,ad I. .aif

[rN = (G')rroN, [rI N = N - [,N]. 3
When an infinite-dimensional controller will suffice, C, = -RjB*P E Z (X, IR ' ) and B, = 5

QC*V 2
i E C(Rt, X) are the usual infinite-dimensional LQG controller and observer gains (see [9]).

The operators PQ E C(X) are the nonnegative-definite solutions to the two decoupled operator

algebraic Riccati equations (2.11) and (2.12) with r and r±j formally set to IX and 0, respectively.

Since C. has range in IR' and B, has domain IR', there exist vectors c, = (cl,... ,C) T x- X I

and b = (bX.. . ,&) E =,X such that

[C.X], = (ct, x), i = 1,2,...,,m, x E X, I

and

i= 1 =

The vectors c, and b, are referred to as the optimal LQG controller and observer functional gains

respectively. 3
With regard to approximation for the full-order LQG problem, for each N = 1,2,... we take

n, = kN. Then it is not difficult to show that 3
CNtPNXz = (c, z), xEX, X

and

B -= (bN)'y, y E IR',
N bXN aegiven by CN =C V(4N)-1,ON b N (N)TON

where c 1 E X=XN and bN E X iN are = (B

respectively with E X ZN. The vectors c and bN are referred to as the1

approximating optimal LQG controller and observer functional gains. To compute them we need

only solve two standard decoupled matrix algebraic Riccati equations for the IN x kN nonnegative- I
definite matrices Q N and PO.

A rather complete convergence theory for LQG approximation can be found in [9J. Essentially,

it is shown there that if the approximating subspaces ZN are chosen so that the projections P N

7
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converge strongly to the identity as N -- oo, the operators AN, BN, CN, RN , and V N are chosen

as was described above, and the operators QN and pN are uniformly bounded in N, then QN and
pN converge weakly to Q .and P, respectively as N -- oo. This in turn implies that C N 

-_ C,

I strongly, B N --+ B., weakly, c' --. cc and bN -- bc, weakly, and the closed-loop senigroup

for the approximating optimal LQG compensator converges weakly to the closed-loop semigroup

for the optimal infinite-dimensional LQG compensator, as N --, oo. If, in addition, the operators

SN(t) = TN(t)+BNCNJ and SN(t) = TN(t) - BNCN are uniformly exponentially stable, uniformly

in N, then QN --+ Q and pN - P, strongly, C N - Cc and B N -- Bc, in norm, CN - cc and

b- bc, strongly, and the closed-loop semigroups converge strongly, as N - oo. If R1' and VN

are coercive, uniformly in N, then SN(t) and sN(t) will be uniformly exponentially stable. If it is

also true that R, and V, are trace class and RJPN -- R and V1 NPN -* V, in trace norm then Q

I and P are trace class and QNpN . Q and pNpN .. p in trace norm as N --+ oo.

Returning to the fixed-finite-order case, we note that in general the approximating optimal

projection equations may not possess a unique solution. However, in [19] it is shown for the finite-

dimens' nal case that it is possible to obtain an upper bound for the number of stabilizing solutions.

I Using topological degree theory, the following result was obtained in [191.

Theorem 2.2. Consider the equations (2.11)-(2.14) with the infinite-dimensional plant IT re-3 placed by the finite-dimensional plant IyN . Let n, denote the dimension of the unstable subspace of

AN and assume that n. > n,. Then in the class of nonnegative-definite operators QN, pN, N, 15N

on X N satisfying rank qN = rank PN - rank NPN nc, there exist at most

(mi n, -- n u n,<rnin(k ,

1, otherwise,

solutions of (2.11)-(2.14), each of which is stabilizing. If, in addition, the plant (AN, BNCN)

is stabilizable by an ncb-order -,ntroller, then there exists at least one stabilizing solution of

U (2.9)-(2.14).

Theorem 2.2 shows that while there may exist multiple solutions to the finite-dimensional op-

5 timal projection equations, in practice this number can be quite small. For example, if nc > n,

and the system is either single input (n = 1) or single output (i = 1) then there exists at most

one solution to (2.9)-(2.14) for the plant 17N . The existence of at least one stabilizing solu-

tion of course depends upon whet ,  or not the plant is stabilizable by an ncth-order controller

I
I
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(for relevant results, see [24]). Finally, while it may be possible to stabilize a plant with n. <ne,

this case lies outside the scope of the analysis given in 1191. 3
3. Examples and Numerical Results 3

We first consider the one-dimensional, single-input/ single-output, parabolic (heat/diffusion)

control system with Dirichlet boundary conditions given by 5
ta7 (t, 17) a 2 v (-- a. -j.(t,/) + b(t)u(t) +h()w(t,v,), 0 < ii < 1, t > 0, (3.1)

V(t,0) = 0, V(t, 1) = 0, t >0, (3.2)

Yt = 101 c(i)v(t, ti)d7 + hzw 2 (t), t > 0, (3.3)

where a > 0, and b(.) and c(-) are given by 3
b( 7) -= ' # ' 02- -, i l < 17 : 2

0, elsewhere,

and
c(')=JT2_1, 71<_ 7=,3
C = 1 0, elsewhere,

with 0 < 61 < 62 _ 1 and 0 < yj < 12 : 1. In (3.1) and (3.3), h(.) E L. (0,1),w,(t,') CI

L2 (0, 1),a.a. t E [0,oo), (see [22], p. 314), h 2 is a nonzero constant and w2 (-) is unit-intensity white

noise. 3
To rewrite (3.1)-(3.3) in the form (2.1), (2.2), in the usual way we take X = L2 (0, 1) endowed

with the standard L2 inner product, let x(t) = v(t,.),t _ 0, define A : Dom(A) c X --* X by 3
AO = aD24 for 0 E DomA -A H2(0, 1) n H0(0, 1), and define B E C(IR, X) and C EC(X,,IR1 ) by

Bu = b(.)u for u E IR1 , and CO = f0 c(vi)4,(i)dj7 , for 4, E L 2 (q, 1), respectively. Furthermore, let j
± L 2 (0,1) X IR, set w(t) (wi(t,.),w 2 (t)) E t, and define.H E C(±,.) and H2 E C(X,IR')

by Hz = hi(.)zi and H2 z = h2 Z2 for z = (z,z2) E . I

It is well known (see, for example, [23]) that A is closed, densely defined, and negative definite.

Furthermore, A is the infinitesimal generator of a uniformly exponentially stable, analytic (abstract 5
parabolic) semigroup {T(t): t 2 0} of bounded, self-adjoint linear operators on X.

We consider linear spline-based Ritz-Galerkin approximation for the open-loop system. For U
each N - 2,3,..., let (N-' be the linear spline ("hat") functions defined on the interval [0,11

9
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with respect to the uniform partition {0,., ,..., 1}, i.e.,

0,N(M NrI--JNl, q -,E ' t- ),
10 0, elsewhere on [0,11,

y = 1,2,...,N - 1. Set XN = span{O4'v}) I and note that kN dimXN = N - 1, and

Z N C Hl(0, 1) for all N. If pN : X _ XN denotes the orthogonal projection of X onto XN,

then standard convergence estimates for interpolatory splines (see [25]) can be used to show that

3 fiMN. . pN 4 = in L2 (0, 1) for 4 E L2 (0, 1).

There are two equivalent ways to obtain an operator representation for the usual Ritz-Galerkin

approximation to A. First, A can be extended to a bounded linear operator from H01(0, 1) onto its
m dual, H-x(0,1), via

(A-0)(0) = -a(DO,DO), 0, E Ho(0,1). (3.4)

3 Since XN C HJo(0,1) for all N = 2,3,..., we define AN E (XN) by AN ON - AON, ON E ZN,

with A46N E H-1(0, 1) considered to be a linear functional on ZN. From the Riesz Representation

3 theorem we obtain AN ON - ON where ON is that element in X which satisfies (AN 'N)(xN)

-a(D4'N, DXN) = (ON,XN ).

3 Alternatively and equivalently, by using the fact that A is self-adjoint, we can define AN as

follows. Let P N : Hol(0, 1) --* XN denote the orthogonal projection of the Hilbert space H0l(0, 1)

onto XN. Using the definition (3.4), it is not difficult to show that -A E Z(H01(0, 1), H- 1 (0, 1))

is coercive and, therefore, that A - ' : H-'(0, 1) -* Ho(0, 1) exists and is bounded. We then define

AN E C(XN) to be the inverse of the operator given by (AN) - I - pNA I N .

Using either definition, it is easily argued that AN is well defined, self-adjoint, and is the

infinitesimal generator of a uniformly exponentially stable (uniformly in N) semigroup, TN ) =

exp(tAN), t >_ 0, of bounded linear operators on XN. Also, using the approximation properties of

3 splines, it is not difficult to show that limjv...(AN)-IPN, = A-',O E X. Consequently, the

hypotheses of the Trotter-Kato theorem (see [23]) are satisfied and we have limN-. TN(t)pN# =5 T(t)O and limN... TN (t)yPN4 = T(t)*',O E X, uniformly in t for t in bounded intervals. A

detailed discussion of the results just outlined can be found in [8].

I We define BN = pNB and CN = CPN, from which it immediately follows that imN--o BN

B and limN.. CN = C in norm and similarly for their adjoints. For the example we shall consider

10I



I
here, we have chosen R, - riIt,R 2 = r2I,, with rl,r 2 > 0. Setting h1 (q) = vl*,O < q < 1, and

h2 = v2* With v1 ,v 2 > 0, we obtain V, = v Ir and V2 = v2 . We then take RN = pNRI and

VIN- P NVI. For the LQG problem, the open-loop uniform exponential stability of both the

infinite-dimensional system and the approximating systems is sufficient to conclude the strong

convergence of the approximating Riccati operators to the solutions of the infinite-dimensional

Riccati equations, the uniform norm convergence of the approximating controller and observer

gains, and the strong convergence of the functional gains, as N --. co.

Since the basis elements _il are piecewise linear with respect to the uniform mesh

{0, -L, , .. , 1} on [0,1], the equivalent matrix representations for the operators defined above can

be computed directly and in closed form. The Gram matrix = (qNN),i,j=1,2,...,N-I I
is given by O "=- Tridiag{ , , .j}, and if we define the generalized stiffness matrix IPN by

!pm -a(D-',DO'Y),i,j = 1,2,...,N - 1, then ifN = aN Tridiag{1,-2,1}. It follows that 3
[AN] = (,ON)-lN,[BN]- ( N)-CbN,[CN] = cN, with b -= (b, ON ) = 0 f2 N(q)dr, and

N = rd(N N N)-1.Ici= (c, q$4) =..-,_ f72 ON(q)di7,i = 1,2,. .. ,N- 1, and that RO 1/ and V =tl¢) 1

For our numerical study we set a = 1, l1 = .75- .03V/2, ,2 = 75 + .04/2, 71 = .25 - .04v2, r2 =

.25 + .03V2,r, = v, = 1,r2 = V2 = 10-4,,h(q) - 1, and used our technique to compute approxi- -
mating optimal LQG (i.e., n. = N - 1) and 1st order (i.e., n, = 1) compensators for various values

of N. The open-loop stability of system (3.1)-(3.3) and the approximating systems imply that the

finite-dimensional approximating optimal projection equations have a solution. Theorem 2.2 on the

other hand, with n, = 0 and n, = 1 or n, = N - 1, implies that they have at most one solution.

Consequently, the system of equations (2.11)-(2.14) with the plants H' admits a unique solution.

The optimal projection equations (2.11)-(2.14) were solved using the homotopic continuation 3
algorithm described in [19]. It is shown in [19] that the operation count for the algorithm is
proportional to p(2n5 + (m + t)n' + (m + 3)ns ) where p is the number of integration steps and n

is the dimension of the finite-dimensional plant. This is competitive with the operation count for

the Hamiltonian solution of the standard Riccati equations which is O(16n3 ) for LQG. Also, note 3
that the computational burden for the solution of the optimal projection equations decreases with
neC. I

Since m = t = 1 in the LQG case, the optimal functional observer and feedback control gains

b. and c, and the approximating gains b' and cN, are all simply L2 functions with bN and cN 3
elements in X N . We plot the functions bN and we obtained for various values of N respectively

11 1
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in Figures 3.1 and 3.2 below. That convergence is indeed achieved can immediately be observed in

the figures. a..

I
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In the fixed-order case with n. = 1, the compensator gains A., Bc, and C are all scalars. Also,

for a first-order controller there are only two independent parameters, A, and BQC0. In Table 3.1

below we give the values we obtained for AN and. B9CN for various values of N. Once again,

it is clear that the gains are converging as N increases. In addition, in Table 3.1 we provide the

closed-loop costs JNfQQ and J4' for the LQG and first-order controllers. These closed-loop costs

were evaluated using a 64th-order modal approximation to the infinite-dimensional system. For all 3
values of N the performance of the fixed-order compensator was within 2% of the corresponding

LQG controller. Thus, for example, the replacement of a 32nd-order approximating optimal LQG I

controller by an approximating optimal first-order controller will yield considerable implementation

simplification with only minor performance degradation. Note that for the example we consider

here, it is possible to compute the open-loop cost for the infinite-dimensional system in closed form.

We have JoL, =tr fo V 1T'(t)R1 T(t)dt virltr foT(t)2 dt

- rl j e i.dt = ? I2
n1011

=12l = 1 .08333.
12a 12

Finally, for comparison purposes, we tried applying balancing techniques to the LQG controllers

to reduce their order. However, with n, = 1, such controllers were found to be destabilizing. Based 3
upon the results in [13], this was not unexpected. I

N AN BcN JNG 3 I

4 -687.6 5470 .06999 .07014

8 -720.9 5231 .06870 .06993

12 -730.9 5182 .06872 .06991

16 -734.3 5145 .06874 .06990

20 -738.0 5127 .06875 .06990

24 -737.6 5108 .06876 .06990

28 -739.8 5109 .06876 .06990 1
32 -738.7 5099 .06877 .06990

Table 3.1

1
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As a second example we consider the one-dimensional, single-input, single-output hereditary

f control system given by

i(t) = ao(t) + alv(t - p) + bou(t) + hlw(t), t> O, (3.5)

y(t) = cov(t) + hW(t), t > 0, (3.6)

I where ao, al,bo,co,hih 2 ,p E IR' with h2 6 0, and w is a unit-intensity white noise process. To

rewrite (3.5), (3.6) in the form (2.1), (2.2), we take X = IR1 x L2 (-p,O) endowed with the usual

5 product space inner product, ((7, 0), (C, 0)) = -C fo . , and let z(t) = (v(t), vt), t > 0, where

for t 0, ut E L 2(-p,0) is given by vt(8) = v(t+e), -p < 0 < 0. Define A: Dom(A) C X --+ X by

I A# = (ao40(0) + a1I (-p),D ) for $ = (0(0),0) E Dom(A) _ {(, 0) E X: 0 E H'(-p,0), (0) =

C}, and let B E C(JR,X) and C E C(X,IR') be given by Bu = (bou,O) and C(27,0) =c0,3 respectively. Let t = IR1 and define HI E Z(t,Z) and H2 E .C(t,JR') by Hiz = (hiz,0) and

H2z = h2 z, for z E IR 1 .

3 The operator A is densely defined and is the infinitesimal generator of a Co senigroup {T(t): t

0} of bounded linear operators on X with T(t)(q,) = (v(t; r, ), v (17, .)), t ! 0, where i(-; 7 , )3 is the unique solution to (3.5) with bo = h= 0, and initial conditions v(O) = l,= . We take

R, E C(X) and R 2 E C(IR) to be Ri(q, ) = (riq,0) and R 2u = r2 u, respectively, with r1 ,r 2 > 0.

The definitions of HI and H2 given above imply that V, E C(X) and V2 E C(IR') are given by

Vi(t, ) = (h2 , ,0) and Vz = h z, for (q,4) E X andz IR1 .

I We employ an approximation scheme recently proposed by Ito and Kappel in [26]. We briefly

outline it here; a more detailed discussion can be found in [26]. For each N = 1,2,... let X E

L2(-p, 0) denote the characteristic function for the interval [-jp/N, -(j - 1)p/N),.j = 1, 2,. .. , N,

and let ZN be the (N + 1)-dimensional subspace of X defined by

I ZN span{(1,), (0,XN),..., (0,XN)}.

3 Let PN: X --+ X" denote the orthogonal projection of X onto ZN. Let { _} =o denote the linear B-

spline functions defined on the interval [-p, 0] with respect to the uniform mesh [-p,..., -p/N, 0),
and set Z = span {( (0), g)}I= 0. Then X' is an (N + 1)-dimensional subspace of Dom(A)

and it is not difficult to demonstrate that the restriction of pN to Z is a bijection onto XZN. Using

the fact that A restricted to ZN has range in XN, we define AN E C(XN) by AN = A(pN) - ,

and set TN(t) - exp(ANt), t _ 0. Noting that R(B) C ZN, we take BN E Z(IR', ZN) to be giveng by BN = B. Similarly, we take RN = R, and V1 'N = V1. We set CN = C.

14I
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It is shown in [26] that pN(q,o) - (q,), TN(t)PN(h7q) .. T(t)(C7,q), and

TN(t)*PN(q,) - T(t)*(q, ) for (tq,4) E X as N --+ oo, uniformly in t, for t in bounded subsets

of [0,oo). It then follows that limN., BN = B and HImNCNPN = C, in norm.

For the LQG (full-order) problem, the optimal functional observer and feedback control gains 1
b. and c. are of the form b, = (fo,P,) and c. = (i'o,i'i) with Po, -yo E IR', and 91, y, E L2(-p,0).

The approximating gains are of the form bN = ( N,N) and c = (-y, -I) with #N, -IN E IR1 and

E span {X} §1r Since we are treating a one-dimensional example, if bo 0 0, the theory

in [261 implies that #O -- o and 0yo' - -yo in IR, and PN --+ 91, and -yf -" "y in L 2(-p,0), as 3
00.

Once again, as in the first example, matrix representations for the operators AN, BN, CN, RN , 3
and V N are not difficult to compute in closed form. Indeed, the (N + 1) x (N + 1) matrix repre-

sentation for the bijection p N: X N_- X1 is given by 3
1 0 0

I * 0
Loo o I

LPI[ 0 0

Then [AN] - [K N][P/N]-, where I
rao 0 0 al
It 0

[K I "" 0o !~

p pL 00o

We have the (N + 1) x 1 matrix [BNI = [bo 0...0 T and the 1 x (N + 1) matrix [CN] = [Co 0...0],

while [RN] = r, [AtN] and [VN] = h2 [.MN] where the (N + 1) x (N + 1) matrix [MN] is given by

1 0 0]

0 0

We set ao = a, = 50= co = r= hi = p = 1, r2 = .1, and h2 = Vf and computed I
approximating optimal LQG (i.e., n, = N + 1) and first-order (i.e., n, = 1) compensators for

15
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N. 8,16,24, and 32. The optimal LQG observer gains are given in Table 3.3 and Figure 3.3; the

31 control gains are given in Table 3.4 and Figure 3.4. The first 23 open-loop poles of the system

(see (27]) are given in Table 3.2. The approximating first-order compensator gains along with the

31 corresponding and LQG closed-loop costs are given in Table 3.5 below. These costs were computed

using an evaluation model obtained by setting N = 64.. Note that the performance of the first-

order controllers is within 10% of the performance of the LQG controllers. Once again it is clear

that convergence is achieved.

1 1.278465

-1.588317 ± 4.155305i

-2.417631 ± 10.68603i

-2.861502 ± 17.05611i

-3.167754 ± 23.38558i

-3.401945 ± 29.69798i

-3.591627 ± 36.00146i

-3.751047 ± 42.29965i

3 -3.888543 ± 48.59442i

-4.009422 ± 54.88686i

3 -4.117267 + 61.17761i

-4.214618 - 67.46710iI
Table 3.2

1
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8 -4.835 -16.057 1.4042 1.5221 I
16 -4.936 -16.343 1.403877 1.5298

24 -4.959 -16.378 1.403856 1.5309 3
32 -4.962 -16.404 1.403852 1.5317

Table 3.5 3
4. Summary and Concluding Remarks

We have proposed an approximation technique for computing optimal fixed-order compensators

for distributed parameter systems. Our approach involves using the optimal projection theory for

infinite-dimensional systems (which characterizes the optimal fixed-order compensator) developed I
in [181 in conjunction with finite-dimensional approximation of the infinite-dimensional plant. We

demonstrated the feasibility of our approach with two examples wherein we used spline-based Ritz- U
Galerkin finite element schemes to compute approximating optimal first-order controllers for one-

dimensional, singe-input/output, parabolic (heat/diffusion) and hereditary control systems. Our 3
numerical studies indicate that convergence of the compensator gains is achieved and that using

the first-order controller would lead to only minimal performance degradation over a standard LQG 3
compensator while yielding significant implementation simplification.

At this point one is led naturally to ask the question of whether or not a satisfactory convergence I
theory could be developed. We are working on this at present and expect that such a theory

would conform closely in form and spirit to the convergence results for LQG approximation found l
in [9] and [10] and outlined in Section 2 above. We also intend to consider our approximation

ideas in the context of discrete-time or sampled-data systems, and for continuous-time systems l
involving unbounded input and/or output (for example, boundary control systems), and systems

with control or measurement delays, see [11],[12]). Finally, we intend to investigate the application I
of our approximation framework to other infinite-dimensional control systems, in particular the

vibration control of flexible structures (i.e., second-order systems such as wave, beam, or plate 3
equations).
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3 Sequential design of decentralized dynamic compensators using the
optimal projection equations

3 DENNIS S. BERNSTEINt

The optimal projection equations for quadratically optimal centralized fixed-order
dynamic compensation are generalized to the case in which the dynamic com-
pensator has, in addition, a fixed decentralized structure. Under a stabilizability
assumption for the particular feedback configuration, the resulting optimality
conditions explicitly characterize each subcontroller in terms of the plant and
remaining subcontrollers. This characterization associates an oblique projection
with each subcontroller and suggests an iterative sequential design algorithm. The
res,,lts are applied to an interconnected flexible beam example.

I 1. Introduction
The purpose of this note is to consider the problem of designing decentralized

dynamic feedback controllers using recently obtained results on quadratically optimal
fixed-order dynamic compensation (Hyland and Bernstein 1984). As in Bernussou
and Titli (1982). Looze et al. (1978), and Singh (1981), the overall approach is to fix the
structure (information pattern and order) of the linear controller and optimize the

steady-state regulation cost with respect to the controller parameters. The underlying
philosophy is that the ability to carry out such an optimization procedure permits the
evaluation of a particular decentralized configuration which may be dictated by
implementation constraints. If there is some flexibility in designing the decentralized
architecture, then these results can be used to evaluate the optimal performance of
each permissible configuration, and hence to determine preferable structures. Since
the present paper is confined to the question of optimal regulation, trade-offs with
rt ard to robustness in the presence of plant variations are not considered. Such
trade-offs can be included, however, by utilizing the Stratonovich multiplicative white
noise approach developed by Bernstein and Hyland (1985).

To further motivate our approach, consider the problem of controlling an nth-
order plant Y by means of a decentralized dynamic compensator consisting of
subcontrollers W, and W2. A straightforward design technique that immediately
comes to mind is that of sequential optimization (Davison and Gesing 1979, Jamshidi
1983). To begin, ignore W2 and design W, as a centralized controller for *. Next,
regard the closed-loop system consisting of Y and W, as an augmented system Y and
design 'W' as a centralized controller for JY. Now redesign W, to be a centralized
controller for the augmented closed-loop system composed of Y and W¢2, and so forth.
One difficulty with this scheme, however, is that of dimension. If, for example, one were
to employ LQG at each step of this algorithm, then on the first iteration W, would
have dimension n and thus W2 would have dimension 2n. On the second iteration, Wt
would require dimension 3n and W2 would have order 4n, and so forth. Such

Received 15 December 1986.
t Harris Corporation, Government Aerospace Systems Division, P.O. Box 94000,

Melbourne, Florida 32902, U.S.A.
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difficulties can be avoided by setting n = 0, which essentially corresponds to static
output feedback. Although easier to implement, static output feedback jacks filtering
abilities such as are inherent in LQG controllers, which are purely dyn1mie (i.e. strictly
preper).

As discussed by Sandell et al. (1978), p. 119, the explanation for this difficulty is
provided by the 'second-guessing' phenomenon: when LQG is used, each subcon-
troller must consist of linear feedback, not only of estimates of the plant states but also
of estimates of the other subcontrollers' estimates. Hence the 'optimal' controller is I
given by an irrational transfer function, i.e. a distributed parameter (infinite-
dimensional) system. Such controllers, of course, must be ruled out since their design
and implementation (except in special cases) violate physical realizability (see, for
example, Bernstein and Hyland 1986). U

Having thus ruled out zeroth-order and infinite-order decentralized controllers,
we focus on the problem of designing purely dynamic decentralized compensators.
Moreover, by invoking the constraint of fixed subcontroller order, we overcome the
second-guessing phenomenon. Utilizing the parameter optimization approach thus
leads to a generalization of the result obtained by Hyland and Bernstein (1984) for
centralized control. In brief, it was shown in Hyland and Bernstein (1984) that the
unwieldy first-order necessary conditions for fixed-order dynamic compensation can
be simplified by exploiting the presence of a previously unrecognized oblique
projection. The resulting optimal projection equations, which consist of a pair of
modified Riccati equations and a pair of modified Lyapunov equations coupled by the I
optimal projection, yield insight into the structure of the optimal dynamic com-
pensator and emphasize the breakdown of the separation principle for reduced-order
controller design. For example, the optimal compensator is the projection of a full- I
order dynamic controller which is generally different from the LQG design.
Furthermore, this full-order controller and the oblique projection are intricately
related since they are simultaneously determined by the coupled design equations. An
immediate consequence is the observation that stepwise schemes employing either I
model reduction followed by LQG or LQG followed by model reduction are generally
suboptimal. For computational purposes, the optimal projection equations permit the
development of novel numerical methods which operate through successive iteration I
of the oblique projectic . (Hyland and Bernstein 1985). Such algorithms are thus
philosophically and operationally distinct from gradient search methods.

The generalization of the optimal projection equations to the decentralized case is
straightforward and immediate. In the optimization process each subcontroller is I
viewed as a centralized controller for an augmented 'plant' consisting of the actual
plant and all other subcontrollers. It need only be observed that the necessary
conditions for optimality for the decentralized problem must consist of the collection I
of necessary conditions obtained by optimizing over each subcontroller separately
while keeping the other subcontrollers fixed. More precisely, this statement corre-
sponds to the fact that setting the Frechet derivative to zero is equivalent to setting the
individual partial derivatives to zero. Hence it is not surprising that the optimal
projection tuations for the decentralized problem involve multiple oblique projec-
tions, one associated with each subcontroller. Furthermore, each subcontroller
incorporates an internal model (in the sense of an oblique projection of full-order I
dynamics) not only of the plant but also of all other subcontrollers. The structure of
the equations suggests a sequential design algorithm such as that proposed in this
work.

1
I
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3 The simplicity with which this result is obtained should not belie its relevance to
the decentralized control problem. Specifically, our approach is distinct from sub-
system-decomposition techniques (Ikeda and Siljak 1980, 1981, Ikeda et al. 1981,
1984, Lindner 1985, Linnemann 1984, Ozguner 1979, Ramakrishna and Viswanadham
1982, Saeks 1979, Sezer and Huseyin 1984, Silkak 1978, 1983) and model-reduction
methods since the optimal projection equations retain the full, interconnected
plant at all times. For the proposed algorithm, decomposition techniques which
exploit subsystem-interconnection data can play a role by providing a starting point
for subsequent iterative refinement and optimization. Decomposition methods may
also play a role when very high dimensionality precludes direct solution of the optimal
projection equations. These are areas for future research.

With regard to the role of the oblique projection, it should be noted that such
transformations do not, in general, preserve plant characteristics such as poles, zeros,
subspaces, etc. Indeed, since the oblique projection arises as a consequence of
optimality, approaches that seek to retain system invariants (e.g. Uskokovic and
Medanic 1985) are generally suboptimal. In addition, the comrplex coupling among
the plant and subcontrollers via multiple oblique projections provides an additional
measure for evaluating the suboptimality of the methods proposed.

The plan of the paper is as follows. The fixed-structure decentralized dynamic-
compensation problem is stated in § 2 along with the generalization of the optimal
projection equations. In § 3 we propose a sequential design algorithm for solving these
equations and state conditions under which convergence is guaranteed. Finally, in § 4
the algorithm is applied to the 8th-order model of a pair of simply supported beams
connected by a spring. For this example, we obtain a two-channel decentralized
design which is 4th-order in each channel and compare its performance with the (8th-
order) centralized LQG design.

3 2. Problem statement and main theorem

Given the controlled system

3 )(t) tAx() + i Biu1(t) + wo(t) (2.1)

yi(t) Cix(t) + wi(t), i =. p (2.2)

design a fixed-structure decentralized dynamic compensator

, xi(t)=A~jxci(t) + Bgiy,(t), i- 1....p (2.3)

u1(t) =Ccx (t), i= 1....p (2.4)

which minimizes the steady-state performance criterion

J(A 1, B, 1, CC ,, B,,, C,,) Alim EIF X(t)T ROx(t) + Ui (t)T Riui(t)1 (2.5)
L

3 where, for i= 1. p: x eP, u Em ' , y E P", c,,ER" -, nc _ 4 n,, ni<5n + nc-n,,.i-I

A, Bi, C, Ac,, Be, C,,, Ro and Ri are matrices of appropriate dimension with Ro
(symmetric) non-negative definite and R (symmetric) positive definite; wo is white
disturbance noise with n x n non-negative-definite intensity V, and w, is white

U
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1572 D. S. Bernstein 3
observation noise with i x Ii positive-definite intensity V, where w, , w,,..., w, are
mutually uncorrelated and have zero mean. E denotes expectation and superscript T
indicates transpose.

To guarantee that J is finite and independent of initial conditions we restrict our
attention to the set of admissible stabilizing compensators

.- {(A.,, B. 1, C.l1 , .., A,,, B,,, C,,): ,4 is asymptotically stable}

where the closed-loop dynamics matrix J is given by 3

where

I- -] IC/C,

LCP

A, block-diagonal (A,,..... ACP) I
B, - block-diagonal (B,,,..., Bc')

C, A block-diagonal (C 1 ,...,C) 3
(For possibly non-square matrices S1 , S2, block-diagonal (S,, S2) denotes the

matrix [S' S])

It is possible that for certain decentralized structures the system is nut stabilizable, I
i.e. d is empty (Wang and Davison 1973, Seraji 1982, Sezer and Siljak 1981). Our
approach, however, is to assume that dl is not empty and characterize the optimal
decentralized controller over the stabilizing class. Since the value of J is independent
of the internal realization of each subcompensator, without loss of generality we can
further restrict our attention to

S/+ {(Ac 1, B, 1 , C 1,..., Acp, BP, Ce.p) c. sY: (Ac1 , Bcj) is controllable and 3
(Cc1 , Aci) is observable, i = 1. p}

The following lemma is an immediate consequence of Theorem 6.2.5, p. 123 of Rao
and Mitra (1971). Let 1, denote the r x r identity matrix.

Lemma 2.1 1
Suppose , 5 E 9 - 9 are non-negative definite and rank Q r. Then there exist

G, r e PFq and invertible M e '" such that

OP = GrMr (2.6) 3
rG T=I, (2.7)

For convenience in stating the main theorem, call (G, M, ) satisfying (2.6), (2.7) a U
U
U
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projective factorization of 015. Such a factorization is unique modulo an arbitrary
change in basis in P', which corresponds to nothing more than a change of basis for
the internal representation of the compensator (or subcompensators in the present
context).

We shall also require the following notation. Let i denote AZ with the rows and
columns containing AC, deleted. Similarly, let 1 be obtained by deleting the rows and3 columns corresponding to C'RiCcE in the matrix

, block-diagonal (Ro, Cc' RI Cc CP P

iAnd furthermore, Pi is obtained by deleting the rows and columns containing Bci ViB c
in

A block-diagonal (VB,, B T B,, , B T

Also define 
C1 BP

100. - Rc) . ,/

where 0,.., denotes the r x s zero matrix. Note that il fi, C,, , and 1 essentially
represent the closed-loop system minus the ith subcontroller as controlled by the
latter. Finally, define

and, for T e P"F', let

I r~~, -t --

Main theorem
Suppose (A 1, B 1,Cc1, .... AcP, B, C0P , ) s,+1 solves the steady-state fixed-

structure decentralized dynamic-compensation problem. Then for i = 1, ..., p there
exist (n + n, - n,,) x (n + n, - nci) non-negative-definite matrices Q,, Pi, Qi and Pi
such that A0 i, Bi and Ci are given by

3 Azi = ri(A - QiFi - 7lPi)G (2.8)

Bci = FiQ Ti vi- (2.9)

3 C,, = - Ri'§TPiG (2.10)

for some projective factorization G,, M,, ri of O1 P1 , and such that, with T, GT r,, the
following conditions are satisfied:

0 = A, Q , + 0.,2 + R - Q, E Q, + Ti, Q.,Zi ,P.,i. (2.11)

0=iAPL+ PAi+ -PPL+*,P P, (2.12)I 0 = (A, - EIP,)Q - A- P) + Q,!,Q, - .QE1Qf, (2.13)

0 = ('4' _ QyE)T5, + P,(Ai _ QE,) + plp _ TT PtPiz, (2.14)

U rank (=rankf 1 = rank i Pi = nci (2.15)

U
U
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Remark 2.1

Because of (2.7) the matrix T, is idempotent, i.e. rj = i. This projection corre- 3
sponding to the ith subcontroller is an oblique projection (as opposed to an
orthogonal projection) since it is not necessarily symmetric. Furthermore, T, is given in
closed form by ll

_ 1
where ( )I denotes the (Drazin) group generalized inverse (see, for example, Campbell
and Meyer, 1979, p. 124). I
3. Proposed algorithm
Sequential design algorithm

Step 1. Choose a starting point consisting of initial subcontroller designs;
Step 2. For a sequence {i4} 1=,, where ik e{1 ... , p), k = 1, 2., redesign subcon-

troller i, as an optimal fixed-order centralized controller for the plant and I
remaining subcontrollers;

Step 3. Compute the cost J, of the current design and check Jk - J_ 1 for
convergence.

Note that the first two steps of the algorithm consist of (i) bringing suboptimal
subcontrollers 'on line' and (ii) iteratively refining each subcontroller. As discussed in
§ 1, the choice of a starting design for Step 1 can be obtained by a variety of existing
methods such as subsystem decomposition. As for subcontrolfer refinement, note that
each subcontroller redesign procedure is equivalent to replacing a suboptimal
subcontroller with a subcontroller which is optimal with respect to the plant and I
remaining subcontrollers.

Proposition 3.1 3
For a given starting design and redesign sequence { ik } " suppose that the optimal

projection equations can be solved for each k to yield the global minimum. Then
{f J }, is monotonically non-increasing and hence convergent.

Determining both a suitable starting point and redesign sequence for solvability
and attaining the decentralized global minimum remain areas for future research.
With regard to algorithms for solving the optimal projection equations for each I
subcontroller redesign procedure, details of proposed algorithms can be found in the
works of Hyland (1983, 1984) and Hyland and Bernstein (1985).

4. Application to interconnected flexible beams
To demonstrate the applicability of the main theorem and the sequential design

algorithm, we consider a pair of simply supported Euler-Bernoulli flexible beams 1
interconnected by a spring (see the Figure). Each beam possesses one rate sensor and
one force actuator. Retaining two vibrational modes in each beam, we obtain the 8th-
order interconnected model 3

A A ,  A2, , B 11 J B2  
04 x I

LA 21  A22 °J L B22 I

C1 =[CI 1  0,], C2 =[01. 4  C22 ] 3
I
I
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II
I

U where

I 0oli 0 0 1
- coI-(k/o I)(sin rci) 2  -2jioj -(k/cu 2j(sin irci)(sin 2irc1 ) 0

A0 - -0 0,2

-(k/cli)(sin 7ci)(sin 27rci) 0 -t 2 1 - (k/wl2 1)(sin 27rc )2  -2CoJ21

3[0 0 0 01
Aj = (k/cowj)(sin ci)(sin ncj) 0 (k/wo2j)(sin 7rci)(sin 21rcj) 0

I 0 0 0

(k/wo1 j)(sin 7rcj)(sin 21rci) 0 (k/W2j)(sin 21ci))(sin 27tc,) 03 i#j

F01
sinf 7ra1

B 0= , = [0 sin 7rsi 0 sin 2ns]

-sin 2na j

aI = dIL,. si = §1lL, cj = elLi

In the above definitions, k is the spring constant, coj, is the jth modal frequency of the
ith beam, C, is the damping ratio of the ith beam, L is the length of the ith beam, and
a1, 9, and e, are, respectively, the actuator, sensor and spring-connection coordinates
as measured from the left in the Figure. The chosen values areU

U
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k= 10 3
woi=l, w2=4, Ci=O0005, Li=, i=1,2

d, = 0"3, 9, = 0-65, e, =06 3
J2 = 0-8, s2 = 0"2, e2 = 0-4

In addition, weighting and intensity matrices are chosen to be

R, = block-diagonal 0 [
(I I/ J1 / l21]' [0 1/o012]' 1/1 1221)

R2 = R3 =0.112

Vo=block-diagonal([ 0i,0 0 0]'[I 0 0],[0 )

V = V2 = 0.112

For this problem the open-loop cost was evaluated and the centralized 8th-order
LQG design was obtained to provide a baseline. To provide a starting point for the
sequential design algorithm, a pair of 4th-order LQG controllers were designed for
each beam separately ignoring the interconnection, i.e. setting k = 0. The optimal I
projection equations were then utilized to iteratively refine each subcontroller. The
results are summarized in the Table.

Design Cost

Open loop 163"5
Centralized LQG

n.. = 8 19.99
Suboptimal decentralized

nc, n.2 -- 4 59.43
Redesign subcontroller 2 28.19
Redesign subcontroller 1 23.29
Redesign subcontroller 2 23.04
Redesign subcontroller 1 22.25 I
Redesign subcontroller 2 21.94
Redesign subcontroller 1 21-86
Redesign subcontroller 2 21.81
Redesign subcontroller 1 21-79
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Abstract

Sufficient conditions are developed for designing robust decentralized static output feedback
controllers. The approach involves deriving necessary conditions for minimizing a bound on closed-
loop performance over - specified range of uncertain parameters. The effect of plant parameter
variations on the closed-loop covariance is overbounded by means of a modified Lyapunov equation
whose solutions are guaranteed to provide robust stability and performance.3
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1. Introduction

Because of implementation constraints, cost, and reliability considerations, a decentralized 1

controller architecture is often required for controlling large scale systems. Furthermore, such

controllers must be robust to variations in plant parameters. The present paper addresses both I

of these concerns within the context of a robust decentralized theory for continuous-time static

controllers. 3
The approach to controller design considered herein involves optimizing closed-loop perfor- I

mance with respect to the feedback gains. This approach to output feedback was studied for

centralized controllers in [8,91 and for decentralized controllers in [10]. An interesting feature of

[9,101 is the recognition of an oblique projection (idempotent matrix) which allows the necessary 1

conditions to be written in terms of a modified Riccati equation. When the problem is specialized

to full-state feedback, the projection becomes the identity and the modified Riccati equation coin- 1
cides with the standard Riccati equation of LQR theory. It should be pointed out that this oblique

projection is distinct from the oblique projection arising in dynamic compensation ([7]). A unified 1
treatment of the static/dynamic (nonstrictly proper) centralized control problem involving both

projections is given in [2]. 3
The present paper goes beyond earlier work by deriving sufficient conditions for robust stability

and performance with respect to variations in the plant parameters. Although plant disturbances

are represented in the usual stochastic manner by means of additive white noise, uncertainty in the

plant dynamics is modeled deterministically by means of constant structured parameter variations 1
within bounded sets. Thus, for example, the dynamics matrix A is replaced by A + I

where ak is a constant uncertain parameter assumed only to lie within the interval [- ca, ak but 3
otherwise unknown, and Ak is a fixed matrix denoting the structure of the uncertain parameter

ak as it appears in the nominal dynamics matrix A. The system performance is defined to be the I
worst-case value over the class of parameter uncertainties of a quadratic criterion averaged over the

disturbance statistics. 3
Since the closed-loop performance can be written in terms of the second-moment matrix, a

performance bound over the class of uncertain parameters can be obtained by bounding the state

covariance. The key to bounding the state covariance is to replace the usual Lyapunov equation for

the second-moment matrix by a modified Lyapunov equation. In the present paper the modified 1
Lyapunov equation is constructed by adding two additional terms. The first term corresponds to aII

1 3II1



uniform right shift of the open-loop dynamics. As is well known ([1]), such a shift may arise from3 an exponential performance weighting and leads to a uniform stability margin for the closed-loop

system. In order to guarantee robustness with respect to specified structured parameter variations,

however, an additional term of the form AkQAT is required. Such terms arise naturally in systems

with multiplicative white noise; see [3,4] and the references therein for further details. The expo-

nential cost weighting and multiplicative noise interpretations for the uncertainty bound have no

bearing in the present paper, however, since parameter variations are modeled deterministically as

constant variations within bounded sets.

Having bounded the state covariance over the class of parameter uncertainties, the worst-case

3 performance can thus be bounded in terms of the solution of the modified Lyapunov equation. The

performance bound can be viewed as an auxiliary cost and thus leads to the Auxiliary Minimization

5 Problem: Minimize the performance bound while satisfying the modified Lyapunov equation. The

nice feature of the auxiliary problem is that necessary conditions for optimality of the performance

bound now serve as sufficient conditions for robust performance in the original problem. Thus our

approach seeks to rectify one of the principal drawbacks of necessity theory, namely, guarantees

of rtability and performance. Furthermore, it should be noted that if numerical solution of the

optimality conditions yields a local extremal which is not the global optimum, then robust stability

and performance are still guaranteed, although the performance of the extremal may not be as

good as the performance provided by the global minimum. Philosophically, the overall approach

of control design for a performance bound is related to guaranteed cost control ([6]). We note,

however, that the bound utilized in [6] is nondifferentiable, which precludes the approach of the

present paper.

A further extension of previous approaches considered in the present paper involves the types

of feedback loops considered. Specifically, the usual approach to static output feedback involves

nonnoisy measurements and weighted controls, while the dual problem involves feeding back noisy

measurements to unweighted controls. This situation leads to an additional projection ([21) which

is dual to the projection discussed in [9,10]. The inclusion of the dual case now leads to a pair of

modified Riccati equations coupled by both the uncertainty bounds and the oblique projections.

In addition to the two types of loops discussed above, one may wish to consider the two

3 remaining cases, namely, feeding back noisy measurements to weighted controls and feeding back

nonnoisy measurements to unweighted controls. It is easy to show, however, that the former case

I .2



I
1

leads to an undefined (i.e., infinite) value for the performance while the latter case is highly singular

and thus will not be treated here.

Finally, the scope of the present paper is limited to the development of sufficient conditions for

robust decentralized output feedback. Numerical solution of these equations can be carried out by 3
extending available algorithms for centralized output feedback. Numerical algorithms for solving a

single modified Riccati equation in the absence of uncertainty bounds are discussed in [101. 3
2. Notation and Definitions
IR, IRJx , IRr, IE real numbers, r x s real numbers, IR'xI, expectation 1

I,, ( )T r x r identity, transpose

ED, 9 Kronecker sum, Kronecker product ([51)
Sr r x r symmetric matrices

INr r x r symmetric nonnegative-definite matrices

IP' r x r symmetric positive-definite matrices I
Z2 <5 Z2 Z2 - Z E IN , Z 1,Z2 E Sr
Z1 < Z2 Z2 - Zi E IPr, Z, Z2 E Sr

asymptotically matrix with eigenvalues in open left half plane I
stable matrix

n, r, s, p positive integers 3
i,j.k indices, i=1,...,r, j=1,..°,s, k-=1,...,p

Mi, . positive integers, i = I,..., r

rhy, 4j positive integers, j= 1,...,s I
Z n-dimensional vector

ui, it in, 4-dimensional vectors, i = 1,..., r

ui, Yj rhj, 4j-dimensional vectors, j I,..., s

A, AA n x n matrices

Bi,AB1 ;C, n x mi matrices; 4 x n matrices, i = l,...,r 3
by;C,, ACj n x th. matrices; tj x n matrices, j= 1,...,s

Al nxnmatrices, k=1,...p

Bk n x ri matrices, i =1,...,r, k=1,...,p I
C j k t4 x n matrices, 1= 1,...,, k=1,...,p

m -x4matrices, i=1,...,r 3
Ecj rhi" x tj matrices, j = ,...,s

a positive number

A, A+ Z
ak positive number, k = 1,...,p

^k a/a, k=1,...,p I

ak real number, k = 1,...,p
w0(t), Wj(t) n-dimensional, te-dimensional white noise, j = 1,... , s

3
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VoVj ~~intensities Of Wo,WY-; VoI, i P ,  l..,
VveN, Vj1Pj ......a

i ~Voi n x ii cross intensity of wo, wj, --1.,s

Ro, RI state and control weightings; Ro E INn , R?.e Ip,, i- ,. r
R0, n x mi cross weighting; Ro-Ro.R7R >O, t=1,...,r5 AAa A +E j BjD66ji+E hz-E -3 C- A + in

AA + E7 ABDjIIC + Z@= b3 EC,&Cj3 t (t) t(t) +  h3E 0= 3W(t)
Ro + Er ,I.RoD, + 6T T

VVo + f,[V 0 "E,. 3. + B1 Ee1 V0
2 + BjEcVE.TBT

For arbitrary n x n Q, P define:

R., R+- kBTPB., P., YBP+R.+E- r B PAk,

k=1 k=1

tk kZ j Q, A iQCT+ Voi +ZE'mAkAQCj, j=:I...,.
h=1 k=1

3. Robust Stability and Performance Problem

5In this section we state the Robust Stability and Performance Problem along with related

notation for later use. Let

U C IRnXnX IRnXm i X ... X IRn xth x IR1- x X ... X R '*xn

denote the set of uncertain perturbations (AA, ABI,..., AB,, AC,,..., AC.) of the nominal sys-

tem matrices A, B,...,B, C1 ,... ,C.

Robust Stability and Performance Problem. Determine (D 1,, ... ,D rEc..,EC8)

such that the closed-loop system consisting of the nth-order controlled and disturbed plant

r a

i (t) = (A + AA)x(t) + E B+ AB1 )u,(t) + ~flaj(t)+ Wo(t), t E[0Ooo), (3.1)
i=1 j=1

3 nonnoisy and noisy measurements

j,(t) = 6i, (t), i = r,. , (3.2)

y3(t) = (C + AC)z(t) + W(t), j = 1,...,s, (3.3)

3 and static output feedback controller

u,(t) = Dji(t), i = 1,...,, (3.4)

4
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f =(t) Eciyj(t), j = 1,...,a, (3.5)

is asymptotically stable for all variations in U and the performance criterion 3
J(Del*I,.. ,De,,Eels .,IEs)A

sup limsup IE[zT(t) az(t) + 2ZXTt)Rou, (t) + u(t)Riu,(,)] (3.6)
U t- =1 1=1

is minimized. 3
For each controller (De,,.. ., Der, Eel,..., E,,) and variation in U, the closed-loop system (3.1)-

(3.5) is given by I
= (i+ tE [0,o), (3.7)

where tii(t) is white noise with intensity V" E IN'. 3
Remark 3.1. In the case AA, ABj,ACI = 0 it is well known that stabilizability is related to 3

the existence of fixed modes ([111). When plant uncertainties are present the problem is, of course,

far more complex. In the present paper sufficient conditions for robust stability are obtained as a 3
consequence of the existence of robust performance bounds.

Remark 3.2. Note that the controller architecture is quite general in that it includes two 3
distinctly different types of decentralized loops. The first type, indexed by i - 1,..., r, involves

feeding back nonnoisy measurements to weighted controls. This is the standard setting in the

optimal output-feedback literature ([8-10]). In addition, we include the dual situation, indexed by

j = 1,..., a, which involves feeding back noisy measurements to iinweighted controls. The case in 3
which only one type of loop is present can be formally recovered from our results by ignoring B,

and di or B., and Cj as required. As noted in Section 1, noisy measurements cannot be fed back

to weighted controls via static control, while feeding back nonnoisy measurements to unweighted

controls is a singular problem.

Remark 3.3. Note that the problem statement is restrictive in the sense that uncertainties

in both the control and observation matrices are not permitted within the same feedback loop. 3
Although it is indeed possible to permit such simultaneous uncertainties, the development is con-

siderably more complex and hence is not treated here. 3
Remark 3.4. The cost functional (3.6) is identical to the LQG criterion (usually stated in

terms of an averaged integral) with the exception of the supremum for evaluating worst case over I
U. 5
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4. Sufficient Conditions for Robust Stability and Performance

I In practice, steady-state performance is only of interest when the closed-loop system (3.7)

is stable over U. The following result, which expresses the performance in terms of the state

I covariance, is immediate.

3 Lemma% 4.1. Let (Dm,,... y Der Ee,..., E=.) be given and suppose the system (3.7) is stable

for all variations in U. Then

J(Del,..., D el ,..., Emr) = sup tr Q& A, (4.1)
U

where Q, -A lim...o I.[x(t)xT(t)] E IN' is the unique solution to

0 = (A + AA)Q+qA (A + .A)r + f. (4.2)

Remark 4.1. When U is compact, 'sup* in (4.1) can be replaced by "max".

We now seek upper bounds for J(Dl,...,D47,E=,,...,Ee.). Our assumptions allow us to

obtain robust stability as a consequence of robust performance.

Theorem 4.1. Let 2 : iN' x IR l mmx x I , xL1 x ... x IRA. x t" --4 Sn be such

* that

,&,Q + Q,&T < n(Q, Del,...., Da,, Eal,,..., PEo),
I (A, AB,...AB,%C,,.., %Ce U,I

(Q, Dell...,IDer,,Eel,... IE,) C INn x 1R ,,, x", x ... x IR ' i x IRA I x L x ... x IRA-' x

I (4.3)

Furthermore, for given (D 1,... , D,, Ee,,... , E..) suppose there exists Q E INn satisfying

I0 = AQ + QAT +/t(Q, Dell ..., Der, Eel, .... E..) + .(4.4)

3 Then the pair (A + AA,'V) is stabilizable for all variations in U if and only if A + A is asymp-

totically stable for all variations in U. In this case,

I QA Q, (4.5)

3 where Q,&, satisfies (4.2), and

3 J(Dc,,..., Der, E,...,Ec.) < tr QR. (4.6)

6I
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Proof. For all variations in U, (4.4) is equivalent to U
0 (A +AA)Q + Q( + AA)T + (Q, D,,,..., Dr, EI,... E,, A-) + 1, (4.7) 3

where

O (Q, De(,,... QD,,,Dc,,..., Ii,,, AA) - n(Q, Dol,..., Dr, El,..,Ec) - (AAQ + QAiT).

Note that by (4.3), 0(-) 0 for all variations in U. If (A+ AA, V1 ) is stabilizable for all variations

in U, it follows from Theorem 3.6 of [12] that (A+AA, [I +(Q, D,,,,.., D,, Eel,.. . , Ee., AA)] i)

is stabilizable for all variations in U. Hence Lemma 12.2 of [12] implies A + AA is asymptotically

stable for all variations in U. The converse is immediate. Next, substracting (4.2) from (4.7) yields 3
o = (Ai +AA) (Q - Q,&,) + (Q - QA (Ai + A)T +!O(Q, De,,,...., Der, Eeli...,s Eo,, AA),

or, equivalently, (since A + AA is asymptotically stable) I
Q - Q'&, = f C(A+&A)td(q , Dl,-) D E .Eca I A)e(A+&A)7tdt > 0,

which implies (4.5). Finally, (4.5) and (4.1) yield (4.6). 0 1
Remark 4.2. If f/ is positive definite then the stabilizabiity hypothesis of Theorem 4.1 is

automatically satisfied for all variations in U. 3
5. Uncertainty Structure and the Quadratic Lyapunov Bound

The uncertainty set U is assumed to be of the form U
U = {(AA,ABl,..., A B ,AC ,... ,AC.):

p p

AA =Z aokAk, ABi= Z akBik, i =,...,,
k=_ k=l (5.1)

,&ci = E= 1,..,s < 1),
k=l =l

where, for k = 1,... ,p: (Ak, Blk,..., Brk, Ck,. .. , C~k) are fixed matrices denoting the structure U
of the parametric uncertainty; al is a given uncertainty bound; and oAk is an uncertain parameter.

Note that the uncertain parameters ak are assumed to lie in a specified ellipsoidal region in IR P. 1
The closed-loop system thus has structured uncertainty of the form

Al Or Uk' (5.2)
k=1

7
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U where

A, A Ak, + j ,D, + BiEjCjk, k = 1,... ,p. (5.3)
Si 1 j=l

To obtain explicit gain expressions for (Del,... ,Der, Ec,... ,Ee.) we assume that, for each

k E {,...,p}, at most one of the matrices Bzk,..., BriCIA;,. -,C~k is nonzero. Note that this

assumption does not preclude the treatment of uncertainties in the input and output matrices. It
requires only that such uncertainties be modeled as uncorrelated.

Given the structure of U defined by (5.1), the bound f7 satisfying (4.3) can now be specified.__ In the following result Q denotes an arbitrary element of IN' , not necessarily a solution of (4.4).

II3 Proposition 5.1. Let ol be an arbitrary positive scalar. Then the function

fl(Q, Del,... , Dr,, Ee,. . . , Eca) = aQ + ,-l E OeAkQAA' (5.4)
k=l

satisfies (4.3) with U given by (5.1).

I Proof. Note that

IsI2)Q + C,- a 2 -A ok,(A,,Q + A)

which yields (4.3). 0= = ~

term o:Q can be thought of as arising from an exponential time weighting of the cost, or, equivalently,

from a uniform right shift of the open-loop dynamics ([11). The second term a- I ":P=& a0: cA.QA T

arises naturally from a multiplicative white noise model ([3,41). Such interpretations have no bearing

3 on the results obtained here since only the bound 1 defined by (5.4) is required. Note that the

bound is valid for all positive a. .

3 Remark 5.2. The conservatism of the bound (5.4) is difficult to predict for two reasons. First,

the overbounding (4.3) holds with respect to the partial ordering of the nonnegative-definite matri-

ces for which no scalar measure of conservatism is available. And, second, the bound (4.3) is required

to hold for all nonnegative-definite matrices Q and feedback gains (D.i,. .. , Der, Eel,... , Ec.). The

conservatism will thus depend upon the actual values of Q, Dei. .. , De, Eel,. .. , E.. determined

by solving (4.4).

*8
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6. The Auxiliary Minimization Problem and Necessary Conditions for Optimality I
Rather than minimizing the actual cost (3.6), we shall consider the upper bound (4.6). This 3

leads to the following problem.

Auxiliary Minimization Problem. Determine (Q, D.... ,Dgr, E,..., E.) which mini- U
m izes J(QD Dcl,.. , D r, E l,.. , E . .) A tr Q k (6.1) I

su bject to 
Q E I " 

6 2Q+"EI, (6.2)

k=1

The relationship between the Auxiliary Minimization Problem and the Robust Stability and 3
Performance Problem is straightforward as shown by the following observation.

Proposition 6.1. Suppose (Q, D,1,..., Dcr, Eol, .. , Eo.) satisfies (6.2)-(6.4). Then I

(A + AA,1i ) is stabilizable for all variations in U (6.4) 3
if and only if A + AA is asymptotically stable for all variations in U. In this case, 3

J(D°I,...,Der ,Eoc,..., ,.) 5 J(Q, Do,.. .,IDr, El,.. ., Eo). (6.5)

Proof. With 12 given by (5.4), Proposition 5.1 implies that (4.3) is satisfied. Since the hy-

potheses of Theorem 4.1 are satisfied, robust stability with performance bound (4.6) is guaranteed. I
Note that with definition (6.1), (6.5) is merely a restatement of (4.6). 0

The derivation of the necessary conditions for the Auxiliary Minimization Problem is based

upon the Fritz John form of the Lagrange multiplier theorem.* Rigorous application of this tech-

nique requires that (Q, Do1... , Do, Eel, ... , Eo.) be restricted to the open set

S-- {(Q, Di,. .. , D , E. ): Q E IP' and A is asymptotically stable},

* The Kuhn-Tucker theorem requires a priori verification of a constraint qualification which is

difficult to confirm in the present context. The Fritz John version is less restrictive and hence more I
suitable.

9 I
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where P

k=l

The requirement (Q, D, De,, Eel,.., E,) E $ implies that Q and its nonnegative-definite

I dual P are unique solutions to the modified Lyapunov equations (6.3) and

PS0 = Ap + pi + 1 IAPiJ + k (6.6)
k=l

An additional technical requirement is that (Q, Dell... , Der, Eel ... , Ee,) be confined to the set

$+-{(Q, Dl ,-)..Der),Eels,...,IE=,) E$S: 6',Q 7>i~ t..

and BPA. > 0, 1= ... ,8}.
The positive definiteness conditions in the definition of S+ hold when 6 and by have full row andI
column rank, respectively, and Q and P are positive definite. As can be seen from the proof of

Theorem 6.1 these conditions imply the existence of the projections vi and Oj corresponding to the

3 two distinct types of feedback loops. Note that S+ is open.

Remark 6.1. As pointed out in Remark 3.1, the set S may be empty in which case, of course,3m our results do not apply. As will be seen, however, our approach does not require explicit verification

that S be nonempty since robust stability is obtained as a consequence of robust performance.

I Remark 6.2. As will be seen, the constraint (Q, DI,... I De,,Ee...,E=,) E S need not

be verified in practice and is not required for either robust stability or robust performance since

Proposition 6.1 shows that only (6.2)-(6.4) are needed. Rather, the set $ constitutes sufficient

conditions under which the Lagrange multiplier technique is applicable to the Auxiliary Minimiza-

tion Problem. Specifically, the condition Q > 0 replaces (6.2) by an open set constraint, while the

asymptotic stability of A serves as a normality condition which further implies that the dual P of

* Q is nonnegative definite.

3 Necessary conditions for the Auxiliary Minimization Problem can now be obtained.

Theorem 6.1. If (Q, D,,,..., De,, Eel,... ,E) E S+ solves the Auxiliary Minimization3 Problem with U given by (5.1), then there exist Q,P E IN" such that D,,,..., DE ,..., Ec,

are given by

I D, = -R-'PsQCT(6,QdT) - ' , i = 1,...,, (6.7)

SE~=j =-(yTPAy 1- PQyV~y', y= 1,...,s, (6.8)

10
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and such that Q, P satisfy U
o= (A, - i BR;jPzv,)q + Q(A, - B ,R.,P.,,) + Vo

i=1 i=1

p r F

+ tk(Ak - Z BikR' P.iv)Q(A; - B

- l Q + iQ 4,vQ~JT#, (6.9)

j= 1 j

(Aa, -t 3 . 6  P(A. - ijQ 4 1 V0 1lCj) + R,)
j=l j=1

P

+ -yh;c(Ah - £jQ~jV~1Cjk) T P(Ak- £'jQ~jV.31CjIc)I
k=l "=1

P. --1 P + vT± P.R+ P..L,, (6.10)

N, QCr(, ,QO)-CO, v ± _I,,-,, i= 1,...,r, (6.11)

, c ",-- (ATPA;)- 1 ATp, .L A -,, j=,...,8. (6.12)

Furthermore, the auxiliary cost is given by i
J(Q, Dei, .. , Dr,, Ee,, ... , Ee)

tr [Q(Ro + viTP. R-1R.R- JP . , n - 2Ro R- 1 P4 iv)]. (6.13)

Conversely, if there exist Q,P E IN' satisfying (6.9) and (6.10) then Q satisfies (6.3) with 3
(De,...,2 Der, Eely..., E,) given by (6.7) and (6.8), and J(Q, D,,..., Der) Eel,..., Eco) is given

by (6.13).

Proof. To optimize (6.1) over the open set S+, subject to the constraint (6.3), form the

Lagrangian

P
C(Q,Del,.. .,Der,Eci,... ,E.) A tr[AQR + (AQ +QAT + E"'A;QAT+ ,P}' i

k=l

where the Lagrange multipliers A > 0 and P E RIR× are not both zero. Setting ae/aQ -", o

implies P = 0 since A is asymptotically stable. Hence, without loss of generality set A 1. Thus I
the stationarity conditions are given by

o__ AT P + PA. + E- , ; + 1=o, (6.14)

k=l

11
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I91- = RDoOQd + pQd = 0, i 1...,,, (6.15)

U 8--= B;Eo,;V+,+ PQ4j =0, j=1,...,. (6.16)

Since (Q,D.,,..., D.,, Eel,..., Ee) E $+, CeQCi and "bTPf. are invertible and hence (6.15)

and (6.16) imply (6.7) and (6.8). Finally, (6.9) and (6.10) are equivalent to (6.3) and (6.6). 0

I Remark 6.3. Several special cases can be recovered formally from Theorem 6.1. For example,

when the control weighting is nonsingular and the measurement noise is zero, i.e., when fij and y,

are absent for i = 1,... ,r, delete (6.8) and set Pj = 0 in (6.9). In this case the last two terms in

(6.9) can be deleted. Deleting also the uncertainty terms Ak, Bik, C,-k yields the results of (101

with the added features of correlated plant/measurement noise (Vi) and cross weighting (RO).
Furthermore, assuming a centralized structure for the static controller, i.e., r = 1, yields the usual

I static output feedback result ([8,9]).

3 7. Sufficient Conditions for Robust Stability and Performance

We now combine Proposition 6.1 and Theorem 6.1 to obtain sufficient conditions for robust

stability and performance.

Theorem 7.1. Suppose there exist Q,P E IN" satisfying (6.9) and (6.10). Then with

(Dl,... ,Dcr,Ec, ... ,E,) given by (6.6) and (6.7), (A + AA,V,) is stabilizable for all vari-

ations in U if and only if ! + Ai is asymptotically stable for all variations in U . In this case the

performance of the closed-loop system satisfies the boundp
J(De,,. .. , Der Eel,.. . , Ece) < tr[Q(Ro + ",P - 2R0,R-'Pav1 )]. (7.1)

Proof. The converse of Theorem 6.1 shows that Q satisfies (6.3) with (Dc,,... ,Dc,

Ee,..., E..) given by (6.7) and (6.8). Hence, with the stabilizability assumption (6.4), Propo-3 sition 6.1 implies robust stability and performance. 0

Remark 7.1. The application of Theorem 7.1 in practice requires 1) numerical solution of

(6.9) and (6.10), and 2) verification of the stabilizabiity hypothesis. No other assumptions need

be verified in applying this result.

1
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8. Concluding Remarks

We have developed a theory of robust decentralized output feedback via static control. The 3
development permits the treatment of noisy and nonnoisy measurements, weighted and unweighted

controls, and structured real-valued parameter uncertainties in the plant matrices. The theory 3
provides a robustification of results given in [8-10] for both centralized and decentralized optimal

output feedback. The theory is constructive in nature rather than existential. Specifically, the 3
main result, Theorem 7.1, involves a coupled pair of modified Riccati equations (6.9), (6.10) whose

solutions, when they exist, are used to explicitly construct feedback gains (6.7), (6.8) which are

guaranteed to provide both robust stability and performance. Future research is required for

evaluating the conservativeness of the theory. The numerical algorithms developed in (10] provide 3
a starting point in this regard.

1
I
I
I

I
,I
I
U
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inverse of the noise intensity matrix. Hence, it is not surprising that a
sizable body of literature has been devuKd to the singular meaurement
noise problem in both continuous and discrete time 121-114). For an
overview of stochastic observer theory, see [151.

Much of the continuous-time singular estimation literature attempts to
overcome the noise singularity by introducing new measurements
obtained by differentiating noise-free measurements. The presen note
complements these results in the following way. For the available noisy
and noise-free measurements we simultaneously design a reduced-order
dynamic estimator for the noisy measurements and a static estimator for
the noise-free measurements. We are not concerned here with the
question of how the measurements are generated (e.g., via successive
differentiation). Rather, our goal is to develop a unified dynamic/stadc
estimation design theory which permits full utilization of both noisy and
noise-free measurements. Application of these results to previously
Proposed approaches to singular estimation involving differentiation and
transformation should be an interesting area for future research.

The results given herein directly generalize the results obtained in [I].
Specifically, the modified Riccati/Lyapunov equations are now coupled
by a pair of oblique projections. As in [I] the requirement for reduced
estimator order gives rise to the projection

2 - OP(P)(1.1)

where ( denotes group generalized inverse and 0 and P are rank-
deficient nonnegative-definite matrices analogous to the controllability
and observability Gramians of the estimator. In addition, the presence of
noise-free measurements

Y )- C2X)(1 (1.2)

leads to the projection

The Optimal Projection Equations for Reduced-Order ,=QC(CQCD-'C 2  (1.3)

State Estimation: The Singular Measurement where Q is the steady-state error covariance. The contrbution of the
Noise Case present note is a concise, unified statement of the optimality conditions in

a form which clearly displays the role of the oblique projections rt and 72
WASSIM M. HADDAD AND DENNIS S. BERNSTEIN in explicitly characterizing optimal static/dynamic (nonstrictly proper)

estimators. An additional feature of the present note is the presence of
Dedicated to the memory of Professor Violet B. Haas state- and measurement-dependent white noise in the plant model. This

November 23, 1926-January 21, 1986 model has been studied in a state-estimator context in 1161-1181 and has
been justified as an approach to robustness in 1191-[221.

Abstract-The optimal projection equations for reduced-order sate In Section M of the note, we consider the case in which the noisy and
estimation am generalized to allow for singular (i.e.. colored) m noise-free measurements are fed to the dynamic and static estimators,

meat moise. The noisy sad noise-free measurements serve as inputs to respectively. In Section IV, we note that feeding the noisy measurements
dynamic mad static estimators, respectively. The optimal solution is to the static estimator results in an ill-posed problem, and we consider the
cbaracterized by necessary conditions which involve a pair of oblique general case in which the noise-free measurements are fed to both the
projections corresponding to reduced estimator order and singular static and dynamic estimators. Optimality conditions now lead to the

measurement noise Intensity, interesting disjointness condition
I0 =72? , (1.4)

. INTRODUCTION
concerning the relationship between the static and dynamic estimators.

It has recently been shown I I I that solutions to the steady-state reduced- The meaning of (1.4) for pr6posed singular estimation schemes will be
order state-estimation problem can be characterized by means of a system explored in future papers.
of modified Riccati and Lyapunov equations coupled by an oblique The goal of this note is confined to a rigorous development of necessary
projection- As in classical Kalman filter theory (2) however, this solution conditions for the optimal estimation problem. In support of this aim it
is based on the assumption that all measurements am corrupted by white should be noted that the usefulness of necessary conditions in optimization
noise. When the measurement noise is singular (i.e., colored), the optimal and optimal control has been amply demonstrated by classical results such
solution cannot be applied since the filter gains are given in terms of the as the maximum principle and Euler-LAgrange theory. For practical

purposes, necessary conditions are largely free from restrictive special

Manuscript received August 7, 1966; revised November 14, 1986 and May 6, 1997. assumptions which invariably accompany sufficiency theory. Most
Thi work wa snppmted in pan by the Air Poce Office of So fic Research udr importantly, success in addresing the problems of existence, sufficiency
Cantac F4962o46.-M. and global optimality is far more likely after the full elucidation of the
W. M. Haddad is with the Depasmew of Meciaical Begimering. Morda tIntute of necessary conditions has been achieved. Indeed, sufficiency conditiom?ectuioo.y htelboure. FL 3290!.
D. S. emlen s wth Has CoF qrm29 oa, 0o1 are often obtained by strengthening necessary conditions by mean of

Melbourne. FL 32902. additional restrictive assumptions.
ME Log Nu ber 6716160 Even without a complete resolution of questions pettaining to existence
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and sufficiency, the necessary conditions fulfill several immediate needs. JR. fRO8LEJ. STATEMENT AND MAIN THEOREM
Specificully. the structure of these conditions provides insight into the
poperties of the solionriin from ptmly conideatins Tis hal Reduced-Order State-Estimation Problem
been demonstrate for the closely related problem of reduced-order
modeling for which local minima are characterized in terms of an Given the nth-order observed system
agersystem decomposition [231. Potentially more useful than insight for
Practical appUltons Are prosp9ct for onstrcting novel computational(A+ U
algorithim which avoid traditional gradient search methods. Thus far, two ty) - (A+ t)A) A~t)+ WOW.) (3.1)

distinct algorithms have been developed, namely, an iterative method
which exploits the structure of the oblique projection [23) and a hoenotopyU
algorithm which eliminates the need for eigensystemn calculations and( 1  ± sC)
provides the means for attaining global optimality [241. For computational Y, (1) -= + vi~t ) -W + (1). (3.2)
purposes it should als he noted that under an existence assu mption the -

necessary conditions are guaranteed to possess a solution to the problem, _ _ _ _ _ _ _ _ _ _ _ _ _

while sufficient conditions may fai in this regard. Y20:) - C2XQ). (3.3)

U3. NOTATION AND DEFINmTONs
A. NXS' a,, a real numbers, r x s real matrices, 91191 expectationI

Iro ( )r, ( ), ni X n identity, transpose, group generalized inverse (25, p. 1241
eD, 0Kronecker sum, Kronecker product [26]

tr z trace of asquare matrix Z

n,,12, n.,p. q pouitive integers, 1 s n s n
ft n+n,

X, X, n, n.-dimensional vectorsI
A, Y2. Y* It,12, q-dimensionalvectorsI
A. Ai;C,Cli ix nmatrices;I, x nmatrices,l-l= , -p

C2; 12 X RMatrix
A.. B., C.. , na. X ng n x 11,q x n., q X 12 matrices
1P(t 1(t) nimerinonal. eoa white noise processes-,,
W00, Q~ ) nditarsialcV~e nwhite now processes
VO nt )( n nonnegative-definite intensity of wo(t)

V, It x 11 positive-definite intensity of wl (t)
Vol nt x 11 cros intensity of wo(t), w1 (t)I

R q x qpositive-definite matrix
qx nmatrix

A [A% 01 A,, 0] ....l , P
I BCA, B.C, 0

Me X 2 matrix

A[B.C1 +XKCz A.]

r w (1)1I

V0  V01B 1 B
BE VT B,B;JF

f[L RL -L tRD.C2 - CrDRL +CrDRD.C2 - L RC+C,"DRC.
--CRL+ C.7RDCz C.TRC.

asymptotically stable matrix matrix with eigenvalues in open left-half plane
nonnegative-semisimple matrix semisimple (nondefective) matrix with nonnegative eigenvalues
nonnegative-definite mtrix symmetric matrix with nonnegative eigenvalues
positive-definite matrix symmetric matrix with positive eigetivalues.

For arbit-ry n x n Q, Qdefine: where I E [0, ca), design an nth-order state etimator

VI ~VIjC,,(gQ)Cr. *,(t)-A*x.(1) +Byk(t), (3.4)

a i-V. I Q 2C Y(0) - C,.x() + AY 2 0) (3-5)

Q.~Qwhi+ ,(+)C,~ch inmizses the staiat o clum o t cierion - I I

AQ ~ A-QV~,'C,. (A.. B..C., D.) A lin (3rt-.QJRL~)-.tj .6)
tA. AI ',
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To guarantee that J is finite, assume that A is asymptotically stable and 0 -AO+ OAr+ Q, V'Qr-rT,,,V' Q r , (3.14)
consider the set of asymptotically stable reduced-order (i.e., fixed-order)

estimators O=AP+P6A+,7rLTRL.,, -1r.Tr LTRL7T,2.,, (3.15)

A ( (A., B,, C, D.) : A, is asymptotically stable). funk a ramk- P-rank OP -n, (3.16)

Since the value of J is independent of the internal realization of the where
transfer function corresponding to (3.4) and (3.5), without Ios of
generality we further restrict our attention to the set of admissible ', Qcr(CQCr)-'C. (3.17)
estimators

Remark 3.1: Several special cases can be recovered from Theorem
A ((A,, B,, C,, D,) E A : (A,, B, is controllable 3.1. For example, when the observation noise is nonsingular, i.e., when

Yz is absent, delete (3.12) and set r, - 0 [22). Deleting also the
and (A., C,) is observable). multiplicative noise terms yields the Main Theorem of [1).

An additional technical requirement is that (A,, B, C,, D) be confined to Specializing Theorem 3.1 to the full-order case n, - n reveals that the
the set Lyapunov equation for P is superfluous. In this case G = r -' and thus G

r - I,, without loss of generality.
A* A ((A,, B,, C_ D,) E .4 Corollary 3.1: Assume n, = n, A is asymptotically stable and (A,, B,,

C2(Ql- QzQ- IQ1 )Cr is positive deftaite}, C, D,) E A * solves the full-order state-estimation problem. Then there
2 12 2 exist n x n nonnegative-definite matrices Q and 1 such that A,, B,, C,,

where D, are given by

Afixi A.A-QV'C.,(3.19)
satisfies B, , (3.19)

o=AO.OAtiAAI+ P C.=L.,L, (3.20)
"'D,=LCr(CQCD ' '  (3.21)

and Q2 is invertible since (A,, B,) is controllable. The positive
definiteness condition holds when C2 has full row rank and Q is positive and such that Q and Osatisfy
definite. As can be seen from the proof of Theorem 3.1, this condition
implies the existence of the projection r1 defined below. 0-AQ+QAT+ A,(QO)AT+ Vo -QV'Qr, (3.22)

The following factorization lemma is needed for the statement of the
main result.

Lemma 3. 1: Suppose n x n 1, P are nonnegative definite. Then S O=A0+A7+QSV'Qr. (3.23)is nonnegaive semisimple. If. in addition, rank P-n,, then there exist 0-1JAr /r .3

n, x n G, r and n, x n, invertible M such that Remark3.2NotethatbysettingAi -0, C, -0, i =, i

LP= G rr, (3.7a) follows that (3.22) and (3.23) are decoupled and (3.23) is superfluous. To
recover the standard Kalman filter which involves nonsingular noise. set

rFGr-I,,. (3.7b) C2 - 0, delete (3.21) and define 71 - 0.

Furthermore, G, M, and r are unique modulo a change of basis in IV. ADDITIONAL ESTIMATOR PATHS

Proof: The result follows from [27, Theorem 6.2.5]. [] We now consider the more general estimator
Since QP is semisimple (diagonalizable) it has a group generalized

inverse (QP)' - GTM - and *,(l)-AX(r)+ Beyl(t)+Ky 2 (t), (4.1)

7, G rI (3.8) y,(t)-Cx,+ D,y2(t)+ fy,(t) (4.2)
is an oblique projection.3r .S o is anyobliquetapr(,tn.) involving the additional gains K and R.

Theorem 3.1: Suppose A is asymptotically stable and (A,, B,, C, D,) Note that the additional path introduced in (4.2) implies that J is infinite
6 A solves the reduced-order state-estimation problem. Then there and thus the problem is meaningless. Hence, setk - 0, and consider the
exist n x n nonnegative-definite matrices Q,, and P such that A, B,,
C,. and D, are given by

A, - r(A - a V I--, C. )G r, (3.9) Replacing (3.4) by (4. 1) and optimizing with respect to K yields

0 =GPQC, (4.3)

a.~~,=r,v,,, ,.owhich implies

D ,=LQC (CQCr ) ' (3.12) 
(4.4)

I D (Using (4.3), 1 - ? 2 and P = Pr, [see (5.17)], the filter gains (3.9)-
and such that Q1, and P satisfy (3.15) become

O-AQ+QA r+ A,(Q+ 4)AIr + Vo'- V, , , + r2 V A,-F(A -Q,VY'C,)G -KCG r, (4.5)

(3.13) B,=Fr.av,', (4.6)I
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38-,Lra.OG (4.7) jdthen, x n,n,Xn,,nX n matrices

D.-L QCr(C QC, " ', (4.8) G A Q"'Qr, M A QP,, r i -P;'P. 1

o0AQ+QAr+± A(Q+O)AT To optmize (3.6) subject to de constraint (5.4) over A, form

L(A.. B,, C,. D,. O.P 1)

OAO+~AT+QV~Q~r Q Vr? 7,Q1' T .r T ~Q [r~ (A +A, (4.)9j

+e V-'(?T+ V
-

r,,o

OlAOO~ro Vor_,,OV ,2.L _ikraaX¢O tr 129+ (A+ QIr+,. , ,

(4.10) where the Lagrange mulipliers A a 0 and P E (lare not both zero
(4.11) and and P are viewed as arbitrary f1 x A matrix variables. Setting al/1

+ 11 - 2 L , Is a! "0. X - 0 implies P = 0 since (A,. B,, C,. D,) E +. Hence.1

where without loss of generality, set X = I. Thus, die stationarity conditions are
given by'

A A A -GrKCl,A A Q A
- r

GTKC. aL_ + AOAT+'Po0 (5.6)1

V. PROOF OF THE MAIN THEOREM 5.7

Using dhe notation of Section lithe augmented system (3.l)-(3.4) can aL ArT 5+ A-PA,+ , 1
be writtenas as

Ao (,) 2+Qt))2(t)+(t) (A), , , (58)

where (pro,+pQrlCr + (pr  Q r

t) IxrOf), xr(t)] r. + P B.C,,Q 1Cr)+pVo,+P2B,V=o. (5.9)1
To analyze (5.1) define the second-mn ent matrix L

Qw-11(t trot) (5.2) -RLQ 1z+RDCzQ 2+RCjQ 2 0, (5.10)

It follows from 128, Theorem 8.5.5, p. 1423 that 0(f) satisfies SL -QC,7 +RDCQC'"+RCQ 7 C 7 0 (5.11
iD,U

dOQ)=AQ(t)+0(tAT+± AoQt)AT+ 1, 12:0. (5.3) Expanding (5.6) and (5.7) yields

O- AQ, + QiA r + t ,,AT+ Va. (5.12)1
Lemma 5. 1: A, CE A if and only if ,

A A A+ A,9 A, O=AQj 2+QCrBr+Q 2Ar+± A,Q,C,,B+ VoiB,, (5.13)1
'Il -

Proof. The result follows from properties of the Kronecker product BCIQT+AQ2 + QC + r B.C1 ,QCrBT+BVBT

applied to partitioned matrices. See [221. (261 for details. '
Hence. A stable ssures (5.14)

0 i 5m (9(j?(t)9fr()J 0-ATpil+CrBrP+Pi'A.-LrRC+ CD RC (5.15)

0 -A4 rP. + P, A, + Cr RC..(.1)l

exists. Furthermore, 2 and its nonnegative-definite dual P are unique
solutions of the modified Lyapunov equations • Note that the (1. 1) subblock of (5.7) characterizing P, has been omitted

from the above equations since the estimator gains are independent of P,
...,+ dIT A t,'+ P, (5.4) Note that (5.8) implies (3.7a) and (3.7b). SinceO=AQ +OA?+L .A+V 54

-IQ 2 P2 =Pj 1/2(p21/Qp212)p' 2 .2

OA rP+PA+ 4,, +'A .  (5.5) Mis positive semisimple. Sylvester's inequality yields (3.16). Note also
d"i that

Prtition i x A P inton x n, n x n, and n, x , (subblocks a.1)1

anI define die n x nninive rMet m 00 'Ashoua in 291. do fonmdl for dederivaiveo( a entr flmntaa with roeg
symmic ugumeab Q a P -.-us a modifteomn of (5.6) ad (5.7). Siam

QQQ . P .ppp.2.IP7T ;udiitsm aft W ettoo. however, dhe &Wn i s kipuawal. Aiwainsively. 00
Q 1 i (W W doi ben) wa y wtix f vabes Symmetry i

Qi i IQ,' . I hIoI I Iy spowerV by die form of (3.4) and (5.5) ad dtwiiy ofA. Hear.2~u~~h numi of 1213 atrrd
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usingthe dentties1261 J. W. Brfewer, -Kronecker products and matrix calculus un system theory.' IEEE
Trans. Circuis Syst., voll. CAS-25, pp. M7-791, 1978.

(5 18 27) C. R. Rao and S. K. Mitrs, Generalized Invserse of Miatrce and Its
Q~.+. P,-P+P, AppIcations. New York: Wiley, 1971.

Q~-OT. p 2 ~p~ (5.9) 281 L. Arnold. Stochstic D~ferential Equations: 77heory and Applications.
1291 J. W. Brewer. I'The gradient with respect to a symmetric mrx." IEE TrantsQ-rr.PI-.. 0  (5.20) Automat. Ct-ecr.. vol. AC-fl, pp. 265-267. 1977.

Stibstiuning (3.10), (3.11), (3.12) and (5.18H)-5.20) into (5.12H-5.16)
and wsing (5.12) + G'r(S13)0 - (5.13)G - (5.13G)T and
G r1r(5.13)G - (5. 13)G - (5.13G) T yields (3.13) and (3.14). Using
rrG(sml)r - (5.1)1. - (5.15r.)" yields (3.15). Finaltly, r(S.13)-
(5.14) or G(5.15)-(5.16) yields (3.9). 0

Remark 5.)1. Equations (4.5)-(4.11) are derived in a similar manner
with A replaced by I in (5. 1).
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The Optimal Projection Equations for Static ana-
Dynamic Output Feedback: The Singular Case

DENNIS S. BERNSTEIN

Dedicated to the memory of Professor Violet B. Haas
November 23, 1926-January 21, 1986

Abstract-Oblique projections have been shown to arise naturally in
both static and dynamic optimal design problems. For static controllers
an oblique projection was Inherent In the early work of Levine and
Albans, while for dynamic controllers tn oblique projection was
developed by Hyland and Bernstein. This note Is motivated by the
following natural question: What is the relationship between the oblique
projection arising in optimal static output feedback and the oblique
projection arising In optimal fxed-order dynamic compensation? We
show that In nonstrictdy proper optimal output feedback thene are.
indeed, thiec distnct oblique projections corresponding to ingular
meassurement noise, singular control weighting, and reduced compensator
order. Moreover, we unify the Levine-Athans anid Hyland-Berinteln
approaches by rederiving the optimal projection equations for combined
static/dynamic (sionstrietly proper) output feedback In a form which
clearly ilustrates the role of t three projections In characterizing the
optimal feedback gains. Even when the dynamic component of the
aonstrictly proper controller is of fanil order, the controller is character-
Ied by four matrix equations which generalize the standard LQG reslt.

1. INTRODUCTION

The optimal static output-feedback problem [1]. [2) and the optimal
fixed-order dynamic-compensation problem [31. [4] have been exten-
sively investigated. A salient feature of the necessary conditions for each
of these problems is the presence of an oblique projection (idempotent
matrix) which arises as a direct consequence of optimality. For the static
problem with noise-free measurements (i.e.. singular measurement noise)
the necessary conditions involve the projection 121

7t-QCT(CQCT) 'C

where Q is the steady-state closed-ioop state covariance. The dual
projection

72 =BDOB'PB) -8 7BP

arises analogously in the corresponding problem involving singular
control weighting. Furthermore, for fixed-order dynamic compensation
with noisy measurements. it has recently been shown 14) that the
necessary conditions give rise to the projection

where O#denotes group generalized inverse and Q and 1S are rank-
deficient nonnegative-dlefinite matrices analogous to the controllability

Manuscript received February 6. 1986; revised November 25. 1986 and May 5. 1967.
This woad was suspported in pan by die Air Force Ofie of scientific Research under
Cantrcti, AFOSR Ft4920-84-C.0Ot5 and F49620-86-C.0002.

The author is with the Haris Corporation. Qovnunent Aerospace systems Division,
Melbourne. aL 32902.
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and observability Oramians of die compensator. To understand the uW~T1 S
relationships among rl, 72, and r3, the contribution of the present noteU
i a unifie treatment of the necessary conditions for optimal stalici LN
dinamic feedback compensation which clealy lluastrates the role of
the three projections in characterizing the optimal feedback gains.
Even in the full-order case in which T-3 is the identity, the result provides
a generalization of the Standard LQG result to nonstrietly proper

* controllers in which case the separation principle does not bold.
To clarify the raifications of noise and weighting singularities in

* ~~optimal output feedback. consider the problem of mnmzn

JulimII[xrR~x+uTRauI (0.1) SAI

with plant dynamics 
CLI

*nAxw+Bu+wa, (1.2) CoD:YATOPC

Y -CX+ wl, (1.3) I

and nionstrctiy proper feedback compensator

4-AxDy. 1.4) out by (1.6) do not appear in Fig. 1. Specifically: 1) nonnoisy
u - Cx(1.5)y measurements can be fed back to unweighted controls; 2) dynamic-

As pinte outin []. is init onl ifcompensator outputs can be fed back to unweighted controls; and 3)
As pintd ot in[3] J s fiiteonl ifnonnoisy measurements can serve as inputs to the dynamic compensator.

The reaso for considering the more limited configuration shown in Fig.!I
0-ty1D,"RIDV1l * -RIDVI (1.6) is that only these paths are explicitly characterized by the necessary

conditions. Hence, for Simplicity we first consider only the scheme of
where VI denotes the intensity of wl.. Clearly, when R, and VI ar Fig. 1, and later introduce the remaining permissible paths. Interestingly,
nonsingular (1.6) implies D, -0, and hence direct feedthrough is not while these additional gains are not completely determined by the-
permitted, i.e., the compensator must be strictly proper. Conversely, to necessary condiitions, they appear to play an important role in governing
utilize a static gain D,, either R, or V, must be singular. By writing geometric interrelationships amiong the three projections.
singular RI and VI without loss of generality as Two final comments are in order. First, since our results are carried out

-~~ in a multiplicative noise setting, we generalize previous results on state

R. -PjV 0 I(1.7) feedback [ 151-[ 181 and dynamic compensation 191 I]. The motivation
0 0 0 j for using a multiplicative white noise model is to represent plant

parameter uncertainties and thereby obtain robust controllers (12]. Also,
it follows that the static transmi~ssion between noisy measurements and the derivations of the necessary conditions are straightforward extenisions
weighted controls must be zero (see Fig. 1). of the Lagrange multiplier technique used in 141 and hence have been

The reader will observe that three feedback paths which are not ruled omitted.

1I. NOTATION AND DEFINITIONS

91 Aj"s Q' real numbers, r x s real matrices, Rl" , expectationI
J,,(), ( ~r x r identity, transpose, group generalized inverse ( 13, p. 124]

@, ® Kronecker sum, Kronecker product1. - . T E1111I
asymptotically stable matrix matrix with eigenvalues in open left-half plane
nonnegative-semisimple matrix semisimple (nondefective) matrix with nonnegative eigenvalues
n, ins. 012, 1,12, n,, p positive integers
X- uI, 12 yl, Y2, X, , in11, "12, 11, 12, n,-dimensional vectors
A.,Ai; B,, Bu,; Ci, Cu, n X nimatrices, n x ml matrices, 1, x nrnatrices, i - , p
B2. C2  n x mn2 matrix, 12 x IT matrix
A,, B,, Cc,, D,,, E, ni, x n,, n, x 11. ml x n,, ml x 12, m2 X I matrices
V,(f unit variance white noise, i - 1, - -. p
WOOLt), W(t n-dimensional. ,-dimensional white noise
Va. VI intensities of wo, w,; Va a 0, VI > 0
Vol n x 11 cross intensity of w0, wl
N. R, st and contol weightings; Re 2: 0, R, > 0
Rol n x mn1 cross weighting: R0 - R.,R - R~ r 0

A. A, A + DIDC 2 + BifC,, A, + BloD,,C 2 + 53ECl,, i -I . ... p

~~~',~~V Vi' J .~v ,1r R.r.,F~
L(BlE,J LV Go J L(3E,)T DC2L 01 R, J DC1J

A BC, A, a,c,]AC ABI,
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B, V.; + B,(VDe(D2 E,) 1
LCrR r+ CRDCc CrR ICc

For arbitrary n X ft Q, P. do A Ti, r2 define: To develop necessary conditions for this; problem. De and Ev must be
restricted to the set of second-moment-stabilizing; pins

R15 9 R, + DriPB, Vt la V + t CuQClr. d E A A A Asa
i-I A j TA A, is~ asyJ+mpl~U u N ioculIybe]

(L AA QCf+ Vol A BT + rAAA~r QCAT++ t**jg jP The requirement (D., Ec) E 6 implies the existence of the steady-state
closed-loop state covariance Q A urn,.... IKxx(t)Q7J. Futiherime, Q

Als RI+ B'P+ 5)Bj. I,, V,+ C.(g+)Cr and its nonnegative-definite dual P are the unique solutions of the
A~ ,X ~PP51 ,PA IfC 1(+)~ modified Lyapurnov equations

AQC~4.VI+~I(Q4)CT, 0AQ+QA'+t A,QAT+ F, (3.7)
1-1

&ABrP+R +± Br(P+P)A,, 0-A TP +PA+ t ArPA1 +,N (3.8)

A A A-B,A-'(&,+BP)r-(&+aCr)vICI. An additional technical assumption is that (D,Ejbe confined to the set

A, AAi-iiA~Q~.3rP~i-r(&+ofl%~'Ci, 5 A (D,, Es) E S : CiQCT>0 and R~rPBi>0).

In order to obtain closed-form expressions for the feedback gains we

Aqg. AA-(;±&d-2Qcr) P -' C,Aa. AA-:A'(&,r,-TPr). make the additional assumption here and in Section TV that

A, R.R,, ~i.e., fo~reach i, Bitand Cuame not both nonzero. By optimizing (3.6) with

+ T((1, + r)TA RIA-(&,+Brp)r.. respect to D, and E, and manipulating (3.7) and (3.8), we obtain the
Is I tonwing result.

7Teorem 3.)1: Suppose (Do, E) E & * solves the satic output feedback
Fla Ja v.-V,P,'(+ic)TT ? 2,(&L+oCrp;,' v; problem. Then there exist n x n nonnegative-definite Q. P such that

+ r:(L+ Qcr) ,' vP p (4,.4.QdrT)rr A- -R ' aQ(CQ ) .(3.10)

Il. STATIC OuTPVT FEEDIAcx E, -- (BPB) -BP.,V~,,(.1

Static Output Feedback Problem and sucht that Q and P satisfy

Given the controlled system Om (A - BjR ~'Pr)+ Q(A - BIR -11 G1.v)T+ V,

14t) (A +± t u(t)A ) +± AB 1 R'6,)QA-,RtPr)

+ B + tu,()t))u1 t) + IU2(t) +wg(t), (3.1) -0. V - ~I qr+ ., VI rr (3.12)

(c+±~~I Is)i)Q+w) (3.2

Y20t) -Czx(t) (3.3) 1

where t6 10, ap), determine D, and E, such that the static output -j'R -tt,+,rd (3.03)
feedback'law

aa1()-D~,Q).(3.4) where

u2)Ey()(3.5) 'r A QC( 1QC)- 1, (3.t4)

miiie h etma.c criterio n1 A B(BrP~a)-'BrP. (.5

1 la tim IIxQ)?R~x(f),2xQ)TRolui(,)+ulQ)Ru(). (3.6) Remark 3.: Severa special cams can be recovered formally from

a-- Theorem 3. 1. For example, when the COauol weighting is foangular
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and the measurement noise is zero. i.e., when ul and Yj are absent, delete P, Q. P such that
(3.11) and set r2-0. Deleting also the multiplicative noise terms yields
the usual static output feedback result [1), 12]. A,=r(A -BtA ,, )Gl, (4.10)

IV. DYNAMIC OUTPUT FEEDBACK B,-r(ri .L - r 
t

o p

We now expand the formulation of the static problem to include a
purely dynamic (strictly proper) dynamic compensator. c,- - A B SP,)Gr, (4.12)

Dynamic Output Feedback Problem A- -A -'( +Brp) r(C=r)- ,(

Given (3.4)-(3.3), determine A, B, C,, D,, E. such that the static and
dynamic output feedback law E-- (BrPB,)- 'BTP(4, + QCr) P' (4.14)

te(t)=A,x,(t)+By,(t), (4.1) where 71 and "2 are given by (3.14) and (3.15), G, r satisfy (4.Sa),

uit)= C~vx,)+DY 2 ), (4.2) (4.8b), and such that, with 73 given by (4.9), Q, P, 0, and 5 satisfy i

u2(t)= Ey(t) (4.3) 0,,,,AQ+QAT+ 7+ JAQA T+ (A,-B,,-A B,', Br

minimizes the performance criterion (3.6).
We restrict our attention to second-moment-stabilizing controllers • - B,, -' [( ,rt £ - B T

Is iIs( -

,)A A., ,DE,:A$A+ A , is•24L,2~ r+3L7 ,,7Q, p,, (,.,,-r,-,, r Trr

asymptotically stable and (A,, B,, C,) is minimalj. (4.15)

which implies the existence of 0 A lim,_, Li TI2(t)T , where 9(t) o
( 4X)T, 7,Q) 7 r . Furthermore, a and its dual P are the unique solutions ArP+PA +A0 + t IAfPA4+(A - [?2L ridCr] P -'C.,) I
of the modified Lyapunov equations -

0A +QA' +' AQA + V. (4.4) " 1 Br" ,)] (( ," .-BrPv ) I
• ,,-Br[ ,)+,rr(,T., -Ba[",,),,e '(&,,,, -BAl,.),,.

0=ATP +PA+j A -AT + 4.5) (.6
4-I U

Partitioning 0=Ah+ CA r + & - " Is) P '('z, &,- ? CD r

wher. and = [ , j:] * [P, P' ] -.r, (, .- .r)-(7302.. -7 0cT 31. (4.17) 3P1 P12

where Q12 and P,2 are n x n,, we also require OA9A+8AA,.(',r,. -R P),-( ',, -BIs )
Z' ai {(A_ B,, C,. D_, E,) E 0: : C:(Q - Q,zQ -'Q[)C7'>0 -Tr ( , _rrrj ,(,, _[r)].(4.18) .

and BT(PI-PI2p;'pr)B2 >O}" rank 0-rank P=-rank C15=n,. (4.19) 3
Optimizing (3.6) over ZD, introducing new variables Remark 4.1: Setting r = r= 0, D, =0, E, = 0 yields the results of U

Q i Q,-Q,2Q;'Q',r P a P,-P, PZ'P2. (4.6) [4], [11].
Remark 4.2: Suppose.n,=n so that 73=1,. Then the resulting full-

S-Q,,QQ;Q , PjC. p,1 p;'pr, (4.7) order nonstrictly proper controller is characterized by four matrix Iequations which generalize the standard LQG result. In this case the
and manipulating (4.4) and (4.5). we obtain the dynamic extension of separation principle is no longer valid.
Theorem 3. 1. The following lemma is required for the statement of the
result. V. ADDITIONAL FEEDBACK PATHS

Lemma 4. ): Suppose n X n" . J are nonnegative definite. Then iOP
is nonnegative semisimple. If, in addition, rank 10= ni, then there exist We now introduce the feedback paths not shown in Fig. I. For the static
n, x n G, r and n, x nc invertible M such that problem replace (3.5) by

O ' P=GrTA , rGr=i.,. (4.ga,b) u:(t)=Ey,(t)+K,y2 (t). (5.1) 3
Proof. The result follows from [14, Theorem 6.2.51. Optimizing with respect to K, yields the additional condition

Since QP is semisimple it has a group inverse (Q)' = GrM r and 0- C QPBj (5.2)
, 4 05(oP)'-Gr (4.9) which implies

is an oblique projection. 0-rr,. (5.3)
Theorem 4.1: Suppose (A e, B,, C,, D,, E) 6 1) solves the dynamic 3

output feedback problem. Then there exist ft x n nonnegative-definite Q, This geometric condition holds when K, is optimally chosen. Although K
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ia notl given explicitly, zt does play a role in the necessary conditions since 0 =A j2+ ORT + 72, 4L P.-'Q
A isreptaced by A + BIX1 C2.

For the dynamic problem replace (4. 1) and (4.3) by T ?2&C'TT-G KCQ.QKC) (.)

2 ,() -E .YiQ) + K yxQ) + K~y2 (). (5.) O = r) P +P ,, (! 5Trr -T r ~ 2 2 .P X 52  , (.

Optimizing with respect to K,, K2, K3 yields
where

0=C =(QPO+ 2 ), (5.b) AS=A+B,IC2 -GKC2, A,=A+B2K ,+B2K~r,

0=aPB,. 4 A0+B2 K.C2-G T
X,, A, A A,+B 2K1 ,+B 2x~r.

S= C, QP. (5.6c)
V1. DIRECTIONS FOR FURTHER REsEARCH

which imply
More general solutions can be obtained by incorporating singular

0 ri~.(5.7a) estimation techniques [15] where noise-free measurements are repeatedly

0 - 773, (.7b) differentiated to enlarge the class of available outputs.

0 37.(5.7c) ACKNOWLEDGMENT
The author wishes to thank D. C. Hyland for numerous helpful

Note that (5.7b) and (5.7c) imply discussions.
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1. Introduction

The singular LQG control problem has been of considerable interest for almost two decades 3
(11-15]). Such problems arise when some of the measurements are noise free or when some of the

control signals are unweighted. This will be the case, for example, if the sensor noise is colored or

if actuator dynamics are included. Augmentation of the plant dynamics by means of noise filters

or actuator dynamics thus leads directly to the singular problem formulation. 1
Most of the literature on the singular LQG problem is based upon limiting procedures in which

suitable weighting matrices and noise intensities approach zero. These results demonstrate the

types of behavior which can arise in the limiting solution including impulsive controls and singular

arcs.

The available literature is concerned, of course, with determining the optimal limiting (i.e., 3
singular) control. In practical applications, however, it is often of interest to determine the optimal

controller within a prespecified class of controllers. In particular, we consider the singular LQG

problem in which the controller is preconstrained to possess a fixed dynamic feedback structure.

One benefit of this approach is that the fixed structure constraint eliminates the possibility of

impulsive controls and other complex behavior.

Preliminary results for the singular LQG problem were obtained in [15] using the fixed struc- 3
ture approach. For generality, the problem considered in [15] permits the design of fixed-order,

i.e., reduced-order, dynamic compensators. As in [18], the solution is given by a system of coupled

algebraic Riccati and Lyapunov equations whose solutions (denoted by Q, P, (, P) are used to ex-

plicitly characterize the optimal feedback gains. The coupling is due to a pair of oblique projections3

(i.e., idempotent matrices) which arise as a direct consequence of the fixed structure constraint.

Theorder-reduction projection r definedby

S,415m

where ()# denotes group generalized inverse, appeared originally in [16], while the static projection 3
v given by ° c(cqc)-lc, 311 A QC T CQC T )-C

is familiar from least squares analysis.

The results of [15] are incomplete, however, in that the gains associated with certain feedback 1
paths were not given explicitly. For the corresponding singular estimation problem ([17]) this de-

11

-- . . , i , I I I I I I I II
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I fect was remedied in [181 where all feedback gains were explicitly characterized. In addition, the

solution obtained in [18] was shown to agree completely with results obtained using standard lim-

iting methods when the (unconstrained) optimal singular estimator does not possess differentiators

([19]). The results of [18] thus provide an alternative approach to the singular estimation problem

considered in [20,21,22] and the numerous references therein.

3 The contribution of the present paper is thus to complete the development of [15] by incorpo-

rating the methods used in [18]. Accordingly, we derive a coupled system of modified Riccati and

Lyapunov equations which explicitly characterize the feedback gains of the fixed-structure singular

LQG controller. For generality we consider partial or total singularity in both the control weight-

ing and measurement noise intensity matrices, and we allow the dynamic compensator to be of

arbitrary dimension less than or equal to the number of plant states minus the number of noise-

free measurements. In the special case in which the order of the dynamic compensator is equal to

the number of plant states minus the number of noise-free measurements (i.e., the quasi full-order

case), then we show that the optimal solution decomposes (separates) into a reduced-order observer

followed by state feedback.

3An additional benefit of our approach is the ability to impose an upper bound on the number

of differentiators to be included in the feedback controller. That is, while certain measurement3 signals may be noise free and hence differentiable, it may be undesirable in practice to implement

more than one level of differentiation or, perhaps any differentiation at all. Furthermore, as in [1813 we demonstrate connections with earlier results by showing that the fixed structure solution agrees

with the standard limiting solution when the latter possesses the same number of differentiators as3 are included in the prespecified controller structure.

To illustrate the solution we consider a numerical example of fourth order with two noise-3 free measurements and one noisy measurement. (Numerical results for the singular control case

are immediate from duality). By solving the coupled systems of modified Riccati and Lyapunov3 equations by means of a homotopy algorithm ([23]), we obtain the quasi full-order solution (second-

order controller) as well as an optimal first-order controller.

1 2
3
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THE OPTIMAL PROJECTION/MAXIMUM ENTROPY APPROACH

TO DESIGNING LOW-ORDER, ROBUST CONTROLLERS
FOR FLEXIBLE STRUCTURES

Dennis S. Bernstein and David C. Hyland m

Harris Corporation
Controls Analysis and Synthesis Group I

Melbourne, Florida 32902 I
Abstract. The Optimal Projection/Maximum Entropy with regard to the latter item, it should be

- stressed that one of the major problems in
approach to designing low-order controllers for designing high-performance control systems is
high-order systems with parameter uncertainties that of robustness, i.e., the ability of the

controller to toTerate errors in the plant model
is reviewed. upon which its design is predicated. Maximum

by incorporating into the dynamic model a repre-

parameters by means of Stratonovich sentation of ignorance (i.e., uncertainty)
multiplicative white noise is motivated by means regarding physical parameters. Roughly speaking,

the idea behind the approach is to use a probabi-
of the Maximum Entropy Principle of Jaynes and listic representation of each imperfectly known
statistical analysis of modal systems. The main plant parameter so that the quadratically optimal

control system designed under this probabilistic
result, the optimal projection equations for model is automatically desensitized to actual

fixed-order dynamic compensation in the presence parameter variations when the control sys%-
is implemented. The overall control-design

of state-, control- and measurement-dependent procedure thus avoids laborious trial and error

noise, represents a fundamental generalization of post-design "tweaking."

classical LOG theory. 2. Motivation

1. Overview The inherent time- and frequency-domain duality
in representing linear dynamic systems (i.e.,

Optimal Projection/Maximum Entropy Stochastic state space versus transfer functions) provides
Modelling and Reduced-Order Design Synthesis control-system designers with complementary
is a rigorous new approach to designing robust, methodologies for assessing tradeoffs between
implementable feedback controllers. Inspired performance objectives and the design constraints
by Statistical Energy Analysis [1], a branch of of sensor resolution, actuation levels, plant I
dynamic modal analysis developed for analyzing modelling accuracy and controller complexity. In
acoustic vibrations, its present stage of spite of the ability of LOG to optimally quantify
development [2-22), embodies a mathematically performance/sensor-resolution and performance/
rigorous, fundamental generalization of classical actuation-level tradeoffs in a state-space
steady-state Kalman filter and linear-quadratic- setting, its enormous sensitivity to plant
Gaussian (LQG) optimal control theory. Although modelling errors has forced practitioners to seek
LQG theory is an effective tool for optimally generalizations of classical frequency domain
quantifying performance/sensor-resolution and methods. In numerous practical situations,
performance/actuation-level tradeoffs, it suffers however, input/output techniques possess funda-
from two fundamental defects which' severely limit mental limitations. For example, representing
its usefulness in practice. modelling uncertainty in a frequency-domain plant

model G(s) by means of
1. Whereas the dimension of an LQG

controller must equal that of the controlled G(s) +&G(s),

plant, optimal projection design characterizes
the quadratically optimal controller of fixed where AG remains in a normed neighborhood of G,
dimension less than that of the plant in is essentially a black-box (nonparametric)
accordance--h implementation constraints (e.g., approach: By failing to exploit physical laws
reliability, complexity or real-time computing (such as conservation of energy), systems
capability), represented by G + AG may actually be physically

impossible, resulting in unwarranted design
2. Whereas LQG presumes exact knowledge of conservatism at the expense of system

each and every parameter appearing in the state- performance. Hence, when some knowledge of

space plant description, maximum entropy Internal mechanisms is availablb (i.e.. the

modelling provides a stochastic plant model which "grey-box" situation), state-space representa-
admits ignorance with regard to parameter values tions may provide greater modelling fidelity.
in accordance with unavoidable plant model ling These observations are motivated by the problemieaord e wof controlling vibration in flexible structures

errors.
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where internal energy dissipation precludeS of an optimal projection as a rigorous,

* right-half-plane poles and where nigh-order unassailable consequence of quadratic optimality
finite-element models have highly structured without recourse to ad hoc methods. Exploitation
dynamics but possess numerous uncertain of this projection leads to immense simplifi-
parameters. More specifically, frequency cation of the "primitive" form of the necessary
uncertainties for higher order modes are much conditions which now provide a transparent
larger in magnitude than damping uncertainties, generalization of the pair of separated Riccati
Hence, the inability to differentiate between equations of standard LQG theory. In particular.
these physical parameters in an input-output the optimal projection equations comprise a
representation leads to severe performance system of four matrix equations coupled by an

* consequences. oblique projection which determines the optimal
controller gains. The system of matrix equations

The optimal projection/maximum entropy approach includes a pair of modified Riccati equations
generalizes LQG theory in two fundamental which are analogous to the standard Riccati
respects: design of reduced-order controllers equations, along with a pair of modified Lyapunov
plus accommodation of a priori parameter equations which arise separately in the model
uncertainties. For clarity, we discuss these reduction problem [19]. The coupling by means of
generalizations separately following the left the projection reveals the inherent
branch of Fig. 1. Optimal projection design is inseparability of these operations in the

* discussed in Section 3, followed by maximum reduced-order case since optimality

entropy modelling in Sections 4, 5, and 6. considerations demand that, in a very precise
sense, "reduction" and "control design" be
performed simultaneously. Hence the full-order
model is retained throughout the control design

OPTIMAL PROJECTION/MAXIMUM ENTROPY process and there is no need to truncate the

APPROACH TO plant model.

LOW-ORDER, ROBUST CONTROLLER DESIGN 4. Maximum Entropy Modelling

LAlthough optimal projection design deals directly
and rigorously with the question of system

PAI, R dimension by trading order off against perfor-

mance, it is, nevertheless, predicated upon theI availability of a completely accurate plant and
disturbance model. Maximum entropy modelling,

I Mhowever, addresses the robustness problem by
ON%" ma-nu, u,, directly including parameter uncertainties in

the plant and disturbance models so that optimal
projection design plus maximum entropy modelling

CM "automatically yields control designs that trade
performance off against modelling uncertainties.
In order to review the maximum entropy approach
it is important to discuss the class of problems
that motivated this work, namely, control of
flexible structures. A finite-element model of
a large flexible structure is, generally, an

Fig. 1 extremely high-order system. For example, a
version of the widely studied Draper Model #2
includes 3 rigid body modes, 147 elastic modes

3. Review of the Optimal Projection Approach and 6 disturbance states, i.e., a total of 306
states, along with 9 sensors and 9 actuators.

Most research into the design of reduced-order Besides the high order of these systems, finite
controllers involves one of two sequential element modelling is known to have poor accuracy,
procedures: model reduction followed by particularly for the high-order modes.
controller design, or controller design followed Reasonable and not overly conservative uncer-
by controller reduction. The optimal projection tainty estimates predict 30-50 percent error in

equations represent a radical departure from both modal frequencies after the first 10 modes, with

of these approaches by diretl characterizing the situation considerably more complex (and

* the quadratically optima-e uced-order control- pessimistic) for damping estimates.

ler lor a high-order model. Assuming a purely Maximum entropy modelling is a form of stochastic
dynamic linear structure for the desired
compensator, whose order Is determined by modelling. Although external disturbances are

I mplementation constraints, a parameter traditionally modelled as random processes, the
optimization approach is taken. There is, of use of stochastic theory to model plant parameter
course, nothing novel about this approach per se uncertainty has seen relatively limited applica-

and it has been widely studied in the control tion. To dispel all objections to a stochastic

literature (see. ferences listed in [18]). This parameter-uncertainty model, we invoke the modern

I approach, howev,:r, fell into disrepute because of information-theoretic interpretation of probabil-

the extreme complexity of the grossly unwieldy ity theory. Rather than regard the probability

first-order necessary conditions which afforded of an event as an objective quantity such as *

little insight and engendered brute-force the limiting frequency of outcomes of iumerous

m gradient search techniques. The crucial repetitions (as, e.g., the number of heads in

discovery occurred E7] where it was revealed that 1,000 coin tosses), we adopt the view that the

the necessary conditions for the dynamic- probability of an event is a subjective quantity

comoensation problem give rise to the definition which reflects the observer's any as to
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whether a particular event will or will not To see why (5.1) is a minimum information model
occur. This quantity is nothing more than a of parameter yncertainty, note that when the
measure of the information (including, e.g., pattern /11/ 11 of an uncertain parameter
all theoretical analysis and empirical data) i
available to the observer. In this sense the 1s known, all available data (theoretical and
validity of a stochastic model of a flexible empirical) can be used to determine a suitable
structure, for example, does not rely upon the value for the magnitude 1 A11 to rflect the
existence of a fleet of such objects (substitute corresponding level of uncertainty. Clearly the
Pensemble" for "fleet" in the classical termi- collection of magnitudes constitutes the minimum
nology) but rather resides in the interpretation data set needed to render (5.1) well defined.
that it expresses the engineer's certainty or For the harmonic oscillator with uncertainuncertainty regarding the values of physical natural frequency, the uncertainty magnitude is
parameters such as stiffnesses of structural given by the reciprocal of the decorrelation timecomponents. This view of probability theory has (Fig. 2). Note that the uncertainty represen-
its roots in Shannon's information theory but was tation (5.1) is a minimum information model in
first articulated unambiguously by Jaynes [23-26]. the sense that it eschews detailed descriptions

of joint probability statistics of unknown I
The preeminent problem in modelling the real oarameters.
world is thus the following: Given limited

(incomplete) a priori data, how does one M
construct a well-defined (complete) probability MINIMUM-INFORMATION MODELLING
model which is consistent with the available data DECORRELATION TIMEbut which avoids inventing data which does not
exist? To this end we Invoke Jaynes' Maximm Ii]

n-tropy Principle: First, define a measure of
ignorance in terms of the information-theoretic * I
entropy, and then determine the probability T A .im .s
distribution which maximizes this measure subject F1.. • PAMUM DIUTRg OF .NFICTING VOCIATMS.
to agreement with the available data. The
reasoning behind this principle is that the Fal NRS EFor.. I . FnU XPOU IN .. fl

probability distribution which maximizes the
a priori ignorance must be the least presumptive
(i.e., least likely--nvent data) on the
average since the corresponding amount of e ' 1
a posteriori learned information (should all
uncertainty suddenly disappear) would necessarily AVMO FAI RESPO.SE
be maximized. If, for some probability distribu- T a "AMPING" T-I COUST-V-
tion, the a priori ignorance and hence the r A sTAvwC UNCENATY NMUSlI
a posteriori learning were less than their poten-
tially maximum value, then BTi distribution must T
be based upon invented and hence generally incor-
rect data. The Maximum Entropy Principle is
clearly desirable for control-system design where I
the introduction of false data is to be assidu- Fig. 2
ously avoided.

5. Minimum-Information Modelling of
Parameter Uncertainties To eliminate the white noise formalism, the model

(5.1) is usually rigorized by the Ito differen-
For dynamical-system modelling it was first shown tial equation
by yland [2] that for structural systems the
minimum information linear stochastic dynamic P (
model induced by the Maximum Entropy Principle of d-t - (Adt + 2 dVtlAI)it t+ cat, (S.2)
Jaynes is a Stratonovich multiplicative white i-1
noise model. In the present paper we adopt this
model and explore its ramifications for general where dvit and dwt are Brownian motions,
systems. The basic model is given by i.e., Wiener processes. Although such models

were studied extensively for control design, this
A. approach fell into disrepute with the publication

(t) (-+ v(t))x(t) +;(t), (5.1) of [27, 28) where it was shown for discrete-time
I systems that sufficiently high uncertainty levels

(i.e., magnitudes I ItII above a "threshold")
where Z(t) R , A e ? ;(t) is zero- lead to the nonexistence of a steady-state

mean Gaussian white disturbance noise with solution. Although it was purported that this
non-negative-definite intensity V. and vt(t) phenomenon" was an "obviousm consequence of

high uncertainty levels, these conclusions
are zero-ean, unit-intensity Gaussian white failed to take into account (possibly because of
noise processes which are mutually uncorrelated the discrete-time setting) the subtle
and uncorrelated with i(t). The multiplicative relationship between the ordinary differential
white noise model (5.1) can be regarded as a equation (5.1) and the stochastic differential
parameter uncertainty model where each vi(t) equation (5.2). Indeed, it was shown in [29]

corresponds to a single uncertain parameer whose that if a stochastic differential equation Is
cottrnsnd moanitde arerivn by e regarded as the limit of a sequence ofPatAern approximating ordinary differential equations
and IIX,1'. respectively, then (5.2) is not the cnrrect version of (5.11.
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Instead, the ordinary differential equation (5.1) to address the following question: Now do theI with multiplicative white noise corresponds to solutions of the stochastic Lyapunov equations
the corrected Ito differential equation (5.7) and (5.8) differ from each other and from

the "deterministic" Lyapunov equation
&t. (W sdt + EP dv,.t,)it + d t, (S.3) z r+V 59
* 4' dvti • (t) '(t) + '(t)TT + V, (59)

where particularly in the presence of high uncertainty

levels? The answer to this question of course
* + 1 P . depends upon the stochastic modification terms

As + I (S.4) which for the naive model are given by

which differs from the "naive" equation (5.2) M!IL(t)] # E,((t)Xr (5.10)
by a systematic drift term. The form of (5.3) 1ll i
was corroborated completely independently by
Stratonovich E30), whose results actually
appeared in the Russian literature prior to
1965. His approach is based upon an alternative and for the corrected model by
definition of the stochastic integral which
differs from the Ito definition by a mathematical
technicality. I -2 :-.T.

!!5 [Q(t)]= _r 1 (FAZ(t) + Q(t)Ai+ ib()AP). (5.11)
In spite of the glaring technicality of the t-1

* Stratonovich correction, almost all research
on the estimation and control of such systems Consider a system consisting of apair of lightly
failed to perceive its physical significance. damped modes so that

* Specifically, the Stratonovich correction -~
neutralizes the "threshold uncertainty 01
principle": For systems which are inherently 212nl 0
stable under particular parameter variations
(e.g., structures with uncertain stiffness
matrices), the Stratonovich formulation correctly 0
predicts unconditional second-moment stability in
contrast to the Ito formulation within which a
stringent uncertainty threshold is encountered. Where " Ci w . and to represent
We shall now proceed to demonstrate this fact by frequency uncertainties let
means of a compelling example relevant to the
modeling and control of flexible structures, in
particular, and hyperbolic systems, in general.

are of interest and are evaluated according to 10 0 0j

J Iim Ex(t)TRj(t) -Ir tr (t)R, (5.5) 0 0 0
whtrdv the 0 0-0

whee ER~l~f nd hesecond moment of the0 0 01state is A2 "y2 0 0 ,

Qlt) E#[(t(t)T]. (5.6)

where for simplicity we have ignored the effects

The obvious fact cannot be overemphasized that of frequency uncertainties on the effective decay

the primary state statistic of design interest in rate 17. The magnitudes of the uncertainties
linear-quadratic optimization is the state are scaled by means of V1 and -f,. For this
covariance (5.6). From Ito calculus it follows example the Ito stochastic modification
that 4(t) is given for the naive model (5.2) by aMIl (t)lhe to soc m

Imlt+t)Jhas the form

A(t + -T (57 2'-T+
1.1 VI' 22(t) -V 1 2 (t) 00

and for the corrected model (5.3) by 2 ~ ~ 1 t

I(t~ ~ot + (t)r- + f q ~t" -T + V. (5-8) 0 0 Y!,-,(t) -"Q t

Each of these "stochastic" Lyapunov differential 0 0 -V34(t) 3 3 (t}

equations, which govern the evolution of the
second moment, should be regarded as n(n+l)/2
ordinary differential equations. Hence we wish
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Although the off-diagonal terms have a becomes increasingly diagonally dominant with
stabilizing effect, its clear that the diagonal increasing frequency and thus assumes the
elements destabilize the state variances. Hence, qualitative form given in Fig. 3. The benefits U
it Is not surprising that for sufficiently high of this sparse form are important: The computa-
uncertainty levels, i.e., y>> 0, the Ito model tional effort required to determine the steady-

is second-moment unstable. These observations state covariance (and thus to design a closed-
ar scondl ntelyiaccordae wths e bsertold loop controller, for example) is directly propor-
are completely in accordance with the threshold tional to the amount of information reposed in IuncertintY principle. The Stratonovichth mo e or eq i a n ly in rs y pr or

corrected stochastic modification S[M(t)], the model or, equivalently, inversely propr-

however, has the form tional to the level of modelled parameter
uncertainty. This casts new light on the
computational design burden vis-a-vis the

." 4" modelling question: The computational burden
-C 2 (t)4 1 j 1 (t) y1VI 3( ~depends only upon the information actually

1 available. A simple control-design exercise
-2^2 t) 721;1 I-AP) "22 4 (t) involving full-state feedback illustrates this

point. The gains for the higher order modes of
."o) 3 ,It) "4( oj) 3 ,) 44 (t). 33 ,t)] .2 4N(t) the beam in Fig. 4, whose frequency uncertain-

ties increase linearly with frequency, were
obtained with modest computational effort in

11012-2)'44 _A1%2 ( -t "l _'2 Cspite of ?r - 100 (see Fig. S). Another important
ramification of the qualitative form of ('is the
automatic generation of a high-/low-authority

which also has stabilizing off-diagonal elements control law. Note that for the higher order and
but has fundamentally different diagonal hence highly uncertain modes the control gains U
elements: Rather than destabilizing the state indicate an inherently stable, low-performance
variances, the diagonal elements of the corrected rate-feedback control law, whereas for the
stochastic modification are equilibrating. This lowest-order modes the control law is high
effect is even more striking when n and MS authority, i.e.. "L" in character.are transformed into the basis witi-respect towhich EFFECT OF FREQUENCY UNCERTAINTIES ON

m"j 1"-1 0 0 0 THE QUALITATIVE STRUCTURE OF THE
STEADY-STATE COVARIANCE Q lr E[x(t)x(t)TJ

0 j1d, - 0 0 -

0A-0w0'000 -J'2-"2 0 1  -o

0 0 0 2- ......--.-.-.-- . ---

where higher order terms In 17 have been Ignored. "-B
In this basis, the diagonal terms of OES) 1ODE S

are destabilizing whereas the diagonal terms of -0 Qnn
%SMflt) exactly vanish. L 1

The native coefficients in the off-diagonal (WELL-KNOWN MODES) (POORLY-KNOWN MODES)

terms mpl~y progressive decorrelation between Is
pairs of dynamical states. Ths lnomational or INFORMATION REGIMES
statistical d ng phenomenon is a direct result
of parameter uncrtainties captured by the Fig. "3
multiplicative white noise model. The
Stratonovlch correction, moreover, is crucial:
By neutralizing the threshold uncertainty
principle, It permits the consideration of
long-term effects for arbitrary uncertaintylevels. FULL-STATE FEEDBACK CONTROL SCHEME

As an example of the ramifications of these
observations, assume (as is usually the case in
practice) that uncertainties in modal frequency
obtained from finite-element analysis of a
flexible structure itcrease with mode number. Na m N
From the form of _S(Oft)J It Is easy to deduce IM"..owthat the steady-state covariance I -hUUS U WgIa4

~Olim ~t

satisfying ' • -

0,tfSI -A -.Z +4~ EIUN +m *~ + V(512

Fig. 4
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m STOCHASTIC BEAM PROBLEM-GAIN MAGNITUDES design an ncth-order dynamic compensator

C -Ax +By, (6.3)

u C x (6.4)

U :. .uwhich minimizes the performance criterion (L6
"' Uln._J(A .8 Ac) lira Ex TR x+2x TR u+u TR Q]. W6S)

c c c 1- 12 I Z

m To guarantee that J is finite and independent of
initial conditions, we restrict (ACBc,CC)

to the (open) set of second-moment-stabilizing
triples

S # (AcBcCC) W s6ps + AA is stable

where • and 4 denoteIKronecker sum and product and
6. Optimal ProJection Design with [ C] [A i BiCci

Stratonovich Multiplicatlve White Noise is A J

To state the Reduced-Order Dynamic Compensation [cCs Ac B C
* Problem, we require the following notation. Let

. nxn
'A ER, A, A,...,A.pER 9 Aft + Z B# pii C* C+ CA.

B, I,... ,cRnxm, C1 .... Cp c R , ncn,

Call a square matrix positive semisimple if it
n n xn ncx1 mxnc has positive eigenvalues and a diagonal JordanXe RC , A c R ,C Be R , C R ,canonical form, i.e., if it is similar to a

positive-diagonal (or, equivalently, a
R c Rnxn R 1an0, R f imxm >O, R Rnxm positive-definite) matrix. The following lemma
RIER , R1  0, R2 ,. R2  12 is proved in [19].

Lema 6.1. If nxn , are non-negative
F delbnnte and rank n ( then there exist
Furthermore, let p be unit-intensity, ncxn G,r and ncxnc positi -semisimple M

zero-mean and mutually uncorrelated white noise such that

processes and let w1 e R
n and w2 e Rf be3 zero-mean white noise processes with intensities GTm, (6.6)

Vl1 0 and V2>0, respectively, and cross-

intensity V12 C Rnxl" Assume that vt ,wi  GT - Inc. (6.7)

I and x(O) are uncorrelated. We require the
technical assumption that, for each i, B 0 0 For convenience in stating the main result we
implies Ct -0, i.e., the control- and shall refer to G, M and r satisfying (6.61 and

measurement-dependent noises are uncorrelated. (6.7) as a projective factorization of

r--For convenience in stating the optimality
Optimal Reduced-Order U~namic-Compensation conditions, define the following notation for
Problem. Given the controlled systemIP P Q. p. c, n n..

x (A+V 1 A A)X + (B+ EIVB )u + wl, (6.1)
t= "" -I ""P T +

R2s * R2 + Bi(P+P)Bi,

y -(C+I'v C )x + w (6.2)t+1 v t 2 P VQ.+)CT
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that, for lightly damped structures, significant I
ABSTRACT modal-frequency uncertainty corresponds to pronounced

spectral-resonance shifting. Frequency-domain boundsThis paper summrizes some recent result. for such perturbations are consequently large and
obtained using the optimal projection/maximum entropy hence may result in conservative performance
control-design equations. The main results include: estimates.
low-order controllers for CSDL Model #2; robust
controllers for the SCOLE and VCOSS A models with 4. VCOSS A
modal-frequency uncertainties; and Doyle's example.

The VCOSS A model [111 is a version of CSDL model
1. Intution #2 involving 9 colocated sensor/actuator pairs plus 2

line-of-sight sensors. For the 28-state (14-mode)
The optimal projection/maximum entropy design model and corresponding 28-state LQG design obtained

equations are discussed in [11-151 and a complete, in (111, the sensitivity to modal-frequency
self-contained derivation appears in [51. In brief, perturbation is shown in Figure 4. Note that
these equations generalize classical LQG theory in two instability results from 32 modal-frequency
distinct ways. First, the controller is constrained perturbations of one of the modelled poles. For the
to have a fixed, reduced order and the resulting maxim entropy design (Figure 5) the robustness is
necessary conditions involve an oblique projection considerably improved with approximately 202 U
[ll. And, second, multiplicative white noise is performance trade. Of course, there are a continuum
introduced into the plant to capture the statistical of intermediate designs that could be obtained for
effects of parameter uncertainty. The resulting desired performance/robustness tradeoffs. The closed-
dynamical equation is interpreted according to loop stability margins for the full 142-mode
symmetric Stratonovich stochastic integration and, evaluationIodel are shown in Figure 6.
using the theory of stochastic approximation, has been

motivated by the maximum entropy principle of Jaynes. 5. Dovle's Examle

2. CSDL #2 As a final application of the ME design
equations, we consider the problem used in [121 to

The optimal projection (OF) reduced-order design demonstrate the lack of robustness of LQG designs. As
equations were solved for the 20-state version of CSDL shown in (121 (see [41 for notation), lQG regulators
Model #2 treated in (6,71. For various control- for the example L
authority levels, OP designs were obtained for orders

nc .10, 6 and 4. Figure 1 sumarizes the results1 B [ 0-C l 0 ,obtained in 16,71. Note that for compensator order nc  A - B C - [l 01,

- 4, the allowable control bandwidth is severely 0 0 [
restricted. The OP designs, however, all lie within
the shaded band close to the LQG performance over a VV 0
considerably expanded range of control bandwidths. 1 012
Relative to LQG, the performance of the OP designs is
given in Figure 2. Details of the numerical algorithm
used to obtain these results are given in (8].

3[. ]O R -1 0, R 2 -1,

The SCOLE configuration is discussed at length in have arbitrarily small stability margin with regard to
19,101. The model utilized in 191 involves 16 states, variations b + Ab when o and P are sufficiently large
12 actuators and 17 sensors. The LQG design reveals and b - I. Setting o - p - 60, it follows that the

instability resulting from 51 modal-frequency LQG regulator is only stable for .93 < b Ab I 1.01.
perturbations. Using the maximum entropy (ME) design Uncertainty in b can be modelled by setting p - 1,
equations. a pair of controllers were obtained in the
presence of stochastically modelled modal-frequency A1 

= 0, 1 - [0 bl]T and C1 - 0. Solving the E
um.ertainties. The first design exhibits near-LQG design equations with b1 - .05, .10, .15 and .20
pIerformance with 60Z increase in robustness, while the
second design is considerably more robust (behaving yields a series of increasingly robust controller
more like the open-loop structure) with nominal designs with respect to both positive and negative
performance within 61 of LQG. These designs (Fig. 3) variations Ab (see Figures 7 and 8). For more
illustrate the performance/robustness tradeoff details, see 1131.
capabilities of the ME method. It should be noted

1795 CH2245-9/85/000-1795 $1.00 0 1985 IEEE
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